460 research outputs found

    Alien Registration- Kemp, Sarah E. (Portland, Cumberland County)

    Get PDF
    https://digitalmaine.com/alien_docs/21747/thumbnail.jp

    Sulfosuccinate and Sulfocarballylate Surfactants As Charge Control Additives in Nonpolar Solvents

    Get PDF
    A series of eight sodium sulfonic acid surfactants with differently branched tails (four double-chain sulfosuccinates and four triple-chain sulfocarballylates) were studied as charging agents for sterically stabilized poly­(methyl methacrylate) (PMMA) latexes in dodecane. Tail branching was found to have no significant effect on the electrophoretic mobility of the latexes, but the number of tails was found to influence the electrophoretic mobility. Triple-chain, sulfocarballylate surfactants were found to be more effective. Several possible origins of this observation were explored by comparing sodium dioctylsulfosuccinate (AOT1) and sodium trioctylsulfocarballylate (TC1) using identical approaches: the inverse micelle size, the propensity for ion dissociation, the electrical conductivity, the electrokinetic or ζ potential, and contrast-variation small-angle neutron scattering. The most likely origin of the increased ability of TC1 to charge PMMA latexes is a larger number of inverse micelles. These experiments demonstrate a small molecular variation that can be made to influence the ability of surfactants to charge particles in nonpolar solvents, and modifying molecular structure is a promising approach to developing more effective charging agents

    1.6 W continuous-wave Raman laser using low-loss synthetic diamond

    Get PDF
    Low-birefringence (Δn<2x10−6), low-loss (absorption coefficient <0.006cm−1 at 1064nm), single-crystal, synthetic diamond has been exploited in a CW Raman laser. The diamond Raman laser was intracavity pumped within a Nd:YVO4 laser. At the Raman laser wavelength of 1240nm, CW output powers of 1.6W and a slope efficiency with respect to the absorbed diode-laser pump power (at 808nm) of ~18% were measured. In quasi-CW operation, maximum on-time output powers of 2.8W (slope efficiency ~24%) were observed, resulting in an absorbed diode-laser pump power to the Raman laser output power conversion efficiency of 13%

    Cellular Models of Aggregation-Dependent Template-Directed Proteolysis to Characterize Tau Aggregation Inhibitors for Treatment of Alzheimer's Disease

    Get PDF
    Copyright © 2015, The American Society for Biochemistry and Molecular Biology. Acknowledgements-We thank Drs Timo Rager and Rolf Hilfiker (Solvias, Switzerland) for polymorph analyses.Peer reviewedPublisher PD

    The Development Of A Modern Foraminiferal Data Set For Sea-Level Reconstructions, Wakatobi Marine National Park, Southeast Sulawesi, Indonesia

    Get PDF
    We collected modern foraminiferal samples to characterize the foraminiferal environments and investigate the role that temporal and spatial variability may play in controlling the nature and significance of foraminiferal assemblages of the mangroves of Kaledupa, Wakatobi Marine National Park, Southeast Sulawesi, Indonesia. The study of foraminiferal live and dead assemblages indicates that dead assemblages are least prone to vary in time and space, and furthermore, they accurately represent the subsurface assemblages that are the focus of paleoenvironmental reconstructions. Further analyses of the dead assemblages indicate a vertical zonation of foraminifera within the intertidal zone. Zone D-Ia is dominated by agglutinated foraminifera Arenoparrella mexicana, Miliammina fusca, M. obliqua and Trochammina inflata. Zone D-Ib has mixed agglutinated/calcareous assemblages with species such as T. inflata and Ammonia tepida. Zone D-II is dominated by numerous calcareous species including A. tepida, Discorbinella bertheloti, Elphidium advenum and Quinqueloculina spp. Zone D-Ia is found to be the most accurate sea-level indicator and its assemblages are omnipresent world-wide. Zones D-Ib and D-II are subject to both spatial and temporal variations which must be included in any sea-level reconstructions

    The Artfulness Initiative: Art as a Tool for Mindfulness

    Get PDF
    The purpose of the Artfulness Initiative is to help its users bring their minds back into the present through the use of arts-based practices as a way to reduce stress and burnout. In a nutshell, the Artfulness Initiative is website that houses a series of process-oriented art practices meant to help adults focus less on the stress of yesterday and tomorrow and focus more on being in the now. It’s important to note that the art process is more important than the product, and that no artistic aptitude or experience is required. The Artfulness website, which was built by ALTLab on Rampages, is accessible to anyone with or without affiliation with VCU; however, the Artfulness Initiative is meant to be advertised to and piloted by VCU faculty and staff. In time the Artfulness Initiative can be implemented by community organizations, such as Boys and Girls Clubs or the Richmond Peace Education Center; in educational settings both within VCU through course offerings, and outside VCU, such as arts, mentorship, or after-school programs in K-12 public schools; and in community college programs and courses, or continuing education programs. Through the Artfulness Initiative, VCU is poised to develop and pilot an online modular curriculum in mindfulness through the arts

    The terrestrial landscapes of tetrapod evolution in earliest Carboniferous seasonal wetlands of SE Scotland

    Get PDF
    The Lower Mississippian (Tournaisian) Ballagan Formation in SE Scotland yields tetrapod fossils that provide fresh insights into the critical period when these animals first moved onto land. The key to understanding the palaeoenvironments where they lived is a detailed analysis of the sedimentary architecture of this formation, one of the thickest and most completely documented examples of a coastal floodplain and marginal marine succession from this important transitional time anywhere in the world. Palaeosols are abundant, providing a unique insight into the early Carboniferous habitats and climate. More than 200 separate palaeosols are described from three sections through the formation. The palaeosols range in thickness from 0.02 to 1.85 m and are diverse: most are Entisols and Inceptisols (63%), indicating relatively brief periods of soil development. Gleyed Inseptisols and Vertisols are less common (37%). Vertisols are the thickest palaeosols (up to 185 cm) in the Ballagan Formation and have common vertic cracks. Roots are abundant through all the palaeosols, from shallow mats and thin hair-like traces to sporadic thicker root traces typical of arborescent lycopods. Geochemical, isotope and clay mineralogical analyses of the palaeosols indicate a range in soil alkalinity and amount of water logging. Estimates of mean annual rainfall from palaeosol compositions are 1000 –1500 mm per year. The high mean annual rainfall and variable soil alkalinities contrast markedly with dry periods that developed deep penetrating cracks and evaporite deposits. It is concluded that during the early Carboniferous, this region experienced a sharply contrasting seasonal climate and that the floodplain hosted a mosaic of closely juxtaposed but distinct habitats in which the tetrapods lived. The diversification of coastal floodplain environments identified here may link to the evolution and movement of tetrapods into the terrestrial realm

    Drug-resistant genotypes and multi-clonality in Plasmodium falciparum analysed by direct genome sequencing from peripheral blood of malaria patients.

    Get PDF
    Naturally acquired blood-stage infections of the malaria parasite Plasmodium falciparum typically harbour multiple haploid clones. The apparent number of clones observed in any single infection depends on the diversity of the polymorphic markers used for the analysis, and the relative abundance of rare clones, which frequently fail to be detected among PCR products derived from numerically dominant clones. However, minority clones are of clinical interest as they may harbour genes conferring drug resistance, leading to enhanced survival after treatment and the possibility of subsequent therapeutic failure. We deployed new generation sequencing to derive genome data for five non-propagated parasite isolates taken directly from 4 different patients treated for clinical malaria in a UK hospital. Analysis of depth of coverage and length of sequence intervals between paired reads identified both previously described and novel gene deletions and amplifications. Full-length sequence data was extracted for 6 loci considered to be under selection by antimalarial drugs, and both known and previously unknown amino acid substitutions were identified. Full mitochondrial genomes were extracted from the sequencing data for each isolate, and these are compared against a panel of polymorphic sites derived from published or unpublished but publicly available data. Finally, genome-wide analysis of clone multiplicity was performed, and the number of infecting parasite clones estimated for each isolate. Each patient harboured at least 3 clones of P. falciparum by this analysis, consistent with results obtained with conventional PCR analysis of polymorphic merozoite antigen loci. We conclude that genome sequencing of peripheral blood P. falciparum taken directly from malaria patients provides high quality data useful for drug resistance studies, genomic structural analyses and population genetics, and also robustly represents clonal multiplicity

    Glucocorticoids regulate mitochondrial fatty acid oxidation in fetal cardiomyocytes

    Get PDF
    Abstract: The late gestational rise in glucocorticoids contributes to the structural and functional maturation of the perinatal heart. Here, we hypothesized that glucocorticoid action contributes to the metabolic switch in perinatal cardiomyocytes from carbohydrate to fatty acid oxidation. In primary mouse fetal cardiomyocytes, dexamethasone treatment induced expression of genes involved in fatty acid oxidation and increased mitochondrial oxidation of palmitate, dependent upon a glucocorticoid receptor (GR). Dexamethasone did not, however, induce mitophagy or alter the morphology of the mitochondrial network. In vivo, in neonatal mice, dexamethasone treatment induced cardiac expression of fatty acid oxidation genes. However, dexamethasone treatment of pregnant C57Bl/6 mice at embryonic day (E)13.5 or E16.5 failed to induce fatty acid oxidation genes in fetal hearts assessed 24 h later. Instead, at E17.5, fatty acid oxidation genes were downregulated by dexamethasone, as was GR itself. PGC-1α, required for glucocorticoid-induced maturation of primary mouse fetal cardiomyocytes in vitro, was also downregulated in fetal hearts at E17.5, 24 h after dexamethasone administration. Similarly, following a course of antenatal corticosteroids in a translational sheep model of preterm birth, both GR and PGC-1α were downregulated in heart. These data suggest that endogenous glucocorticoids support the perinatal switch to fatty acid oxidation in cardiomyocytes through changes in gene expression rather than gross changes in mitochondrial volume or mitochondrial turnover. Moreover, our data suggest that treatment with exogenous glucocorticoids may interfere with normal fetal heart maturation, possibly by downregulating GR. This has implications for clinical use of antenatal corticosteroids when preterm birth is considered a possibility. Key points: Glucocorticoids are steroid hormones that play a vital role in late pregnancy in maturing fetal organs, including the heart. In fetal cardiomyocytes in culture, glucocorticoids promote mitochondrial fatty acid oxidation, suggesting they facilitate the perinatal switch from carbohydrates to fatty acids as the predominant energy substrate. Administration of a synthetic glucocorticoid in late pregnancy in mice downregulates the glucocorticoid receptor and interferes with the normal increase in genes involved in fatty acid metabolism in the heart. In a sheep model of preterm birth, antenatal corticosteroids (synthetic glucocorticoid) downregulates the glucocorticoid receptor and the gene encoding PGC-1α, a master regulator of energy metabolism. These experiments suggest that administration of antenatal corticosteroids in anticipation of preterm delivery may interfere with fetal heart maturation by downregulating the ability to respond to glucocorticoids

    A major genetic locus in <i>Trypanosoma brucei</i> is a determinant of host pathology

    Get PDF
    The progression and variation of pathology during infections can be due to components from both host or pathogen, and/or the interaction between them. The influence of host genetic variation on disease pathology during infections with trypanosomes has been well studied in recent years, but the role of parasite genetic variation has not been extensively studied. We have shown that there is parasite strain-specific variation in the level of splenomegaly and hepatomegaly in infected mice and used a forward genetic approach to identify the parasite loci that determine this variation. This approach allowed us to dissect and identify the parasite loci that determine the complex phenotypes induced by infection. Using the available trypanosome genetic map, a major quantitative trait locus (QTL) was identified on T. brucei chromosome 3 (LOD = 7.2) that accounted for approximately two thirds of the variance observed in each of two correlated phenotypes, splenomegaly and hepatomegaly, in the infected mice (named &lt;i&gt;TbOrg1&lt;/i&gt;). In addition, a second locus was identified that contributed to splenomegaly, hepatomegaly and reticulocytosis (&lt;i&gt;TbOrg2&lt;/i&gt;). This is the first use of quantitative trait locus mapping in a diploid protozoan and shows that there are trypanosome genes that directly contribute to the progression of pathology during infections and, therefore, that parasite genetic variation can be a critical factor in disease outcome. The identification of parasite loci is a first step towards identifying the genes that are responsible for these important traits and shows the power of genetic analysis as a tool for dissecting complex quantitative phenotypic traits
    corecore