37 research outputs found

    Range expansion of Ambrosia artemisiifolia in Europe is promoted by climate change

    Get PDF
    Ambrosia artemisiifolia L., native to North America, is a problematic invasive species, because of its highly allergenic pollen. The species is expected to expand its range due to climate change. By means of ecological niche modelling (ENM), we predict habitat suitability for A. artemisiifolia in Europe under current and future climatic conditions. Overall, we compared the performance and results of 16 algorithms commonly applied in ENM. As occurrence records of invasive species may be dominated by sampling bias, we also used data from the native range. To assess the quality of the modelling approaches we assembled a new map of current occurrences of A. artemisiifolia in Europe. Our results show that ENM yields a good estimation of the potential range of A. artemisiifolia in Europe only when using the North American data. A strong sampling bias in the European Global Biodiversity Information Facility (GBIF) data for A. artemisiifolia causes unrealistic results. Using the North American data reflects the realized European distribution very well. All models predict an enlargement and a northwards shift of potential range in Central and Northern Europe during the next decades. Climate warming will lead to an increase and northwards shift of A. artemisiifolia in Europe

    Are plant species able to keep pace with the rapidly changing climate?

    Get PDF
    Future climate change is predicted to advance faster than the postglacial warming. Migration may therefore become a key driver for future development of biodiversity and ecosystem functioning. For 140 European plant species we computed past range shifts since the last glacial maximum and future range shifts for a variety of Intergovernmental Panel on Climate Change (IPCC) scenarios and global circulation models (GCMs). Range shift rates were estimated by means of species distribution modelling (SDM). With process-based seed dispersal models we estimated species-specific migration rates for 27 dispersal modes addressing dispersal by wind (anemochory) for different wind conditions, as well as dispersal by mammals (dispersal on animal's coat – epizoochory and dispersal by animals after feeding and digestion – endozoochory) considering different animal species. Our process-based modelled migration rates generally exceeded the postglacial range shift rates indicating that the process-based models we used are capable of predicting migration rates that are in accordance with realized past migration. For most of the considered species, the modelled migration rates were considerably lower than the expected future climate change induced range shift rates. This implies that most plant species will not entirely be able to follow future climate-change-induced range shifts due to dispersal limitation. Animals with large day- and home-ranges are highly important for achieving high migration rates for many plant species, whereas anemochory is relevant for only few species

    Raccoons contraband – The metazoan parasite fauna of free-ranging raccoons in central Europe

    Get PDF
    The invasive raccoon (Procyon lotor) is an abundant carnivore and considered as an important potential vector of infectious diseases and parasites in Europe. Raccoons show a broad, opportunistic, omnivorous food spectrum. Food supply and habitat quality in urban areas are very attractive for the generalist raccoon. This inevitably leads to increased interaction with humans, domestic animals and livestock, making the raccoon a potentially suitable zoonosis vector. In its autochthonous range, especially in the Eastern and Midwestern United States, the raccoon has been studied very intensively since the beginning of the 20th century. Whereas, basic field biology and parasitology studies in Germany and Europe are lacking and have only been conducted sporadically, regionally and on small sample sizes. In the presented study 234 raccoons from central Germany were comprehensively examined for their metazoan parasite fauna. The present study shows for the first time an extremely diverse parasite fauna in raccoons outside their native range and proves their essential role as intermediate hosts and hosts for ecto- and endoparasites. A total of 23 different parasite species were identified, five of which are human pathogens, 14 of which are new for the parasite fauna of raccoons in Europe. The human pathogenic raccoon roundworm Baylisascaris procyonis is the most common parasite species in this study, with a prevalence of up to 95%. The digenetic trematode Plagiorchis muris, another human pathogenic parasite species, was detected for the first time in raccoons. The ongoing spread of invasive carnivores and the associated spread and transmission of their parasites and other pathogens increases the potential health risk of wild and farmed animals as well as humans. An increase in parasitic diseases in humans (e.g. raccoon roundworm) is to be expected, especially in urban areas, where raccoons are becoming more and more abundant

    From the Balkan towards Western Europe: Range expansion of the golden jackal (Canis aureus)—A climatic niche modeling approach

    No full text
    Abstract In recent decades, a rapid range expansion of the golden jackal (Canis aureus) towards Northern and Western Europe has been observed. The golden jackal is a medium‐sized canid, with a broad and flexible diet. Almost 200 different parasite species have been reported worldwide from C. aureus, including many parasites that are shared with dogs and cats and parasite species of public health concern. As parasites may follow the range shifts of their host, the range expansion of the golden jackal could be accompanied by changes in the parasite fauna in the new ecosystems. In the new distribution area, the golden jackal could affect ecosystem equilibrium, e.g., through changed competition situations or predation pressure. In a niche modeling approach, we project the future climatic habitat suitability of the golden jackal in Europe in the context of whether climatic changes promote range expansion. We use an ensemble forecast based on six presence‐absence algorithms to estimate the climatic suitability of C. aureus for different time periods up to the year 2100 considering different IPCC scenarios on future development. As predictor variables, we used six bioclimatic variables provided by worldclim. Our results clearly indicate that areas with climatic conditions analogous to those of the current core distribution area of the golden jackal in Europe will strongly expand towards the north and the west in future decades. Thus, the observed range expansion may be favored by climate change. The occurrence of stable populations can be expected in Central Europe. With regard to biodiversity and public health concerns, the population and range dynamics of the golden jackal should be surveyed. Correlative niche models provide a useful and frequently applied tool for this purpose. The results can help to make monitoring more efficient by identifying areas with suitable habitat and thus a higher probability of occurrence

    Climatic niche comparison of raccoons Procyon lotor and raccoon dogs Nyctereutes procyonoides in their native and non-native ranges

    No full text
    1. During the last century, the practice of fur farming in Europe led to the introduction of two mammal species from opposite ends of the world. With their subsequent unintentional escape from captivity or intentional releases, the process of slow expansion and establishment in Europe began. The raccoon Procyon lotor and the raccoon dog Nyctereutes procyonoides are included on the European Union’s list of invasive alien species. 2. We characterised the current climatic niches of the two species in their native ranges in North America and Asia, and compared them with their non-native-range niches in Europe, where we also projected climatic suitability. The aim was to locate suitable habitats beyond their current ranges and assess where a range expansion can be expected. 3. Niche comparison and the projection of climatic suitability in Europe were based on eight bioclimatic variables and presence records from the Global Biodiversity Information Facility database. For niche modelling, we applied the maximum entropy approach (Maxent) and used the native-range data for training. 4. Minimum temperature of the coldest month (bio06) was identified as the most important bioclimatic variable in the habitat suitability models for both species. Different tolerance levels regarding this variable might explain small differences between the species’ projected ranges, especially in the north and east of Europe. The high niche unfilling for both species in Europe suggests a potential for expansion beyond their present ranges. 5. With only little understanding of their ecological impacts in their new ranges, including the potential risk of Nyctereutes procyonoides as SARS-CoV-2 reservoir hosts, further research and management is required at various spatial scales in Europe

    Ecologically and medically important black flies of the genus Simulium: identification of biogeographical groups according to similar larval niches

    No full text
    Highlights • Three ecological groups were identified based on distributional patterns. • Old assessments were confirmed with the latest occurrence data. • For each group, we derived different population trends in times of global change. • Global change elevates importance of vector-borne diseases. • Our results serve as base for effective Simuliidae monitoring. Abstract The black fly genus Simulium includes medically and ecologically important species, characterized by a wide variation of ecological niches largely determining their distributional patterns. In a rapidly changing environment, species-specific niche characteristics determine whether a species benefits or not. With aquatic egg, larval and pupal stages followed by a terrestrial adult phase, their spatial arrangements depend upon the interplay of aquatic conditions and climatic-landscape parameters in the terrestrial realm. The aim of this study was to enhance the understanding of the distributional patterns among Simulium species and their ecological drivers. In an ecological niche modelling approach, we focused on 12 common black fly species with different ecological requirements. Our modelling was based on available distribution data along with five stream variables describing the climatic, land-cover, and topographic conditions of river catchments. The modelled freshwater habitat suitability was spatially interpolated to derive an estimate of the adult black flies' probability of occurrence. Based on similarities in the spatial patterns of modelled habitat suitability we were able to identify three biogeographical groups, which allows us to confirm old assessments with current occurrence data: (A) montane species, (B) broad range species and (C) lowland species. The five veterinary and human medical relevant species Simulium equinum, S. erythrocephalum, S. lineatum, S. ornatum and S. reptans are mainly classified in the lowland species group. In the course of climatic changes, it is expected that biocoenosis will slightly shift towards upstream regions, so that the lowland group will presumably emerge as the winner. This is mainly explained by wider ecological niches, including a higher temperature tolerance and tolerance to various pollutants. In conclusion, these findings have significant implications for human and animal health. As exposure to relevant Simulium species increases, it becomes imperative to remain vigilant, particularly in investigating the potential transmission of pathogens

    Off to new shores: Climate niche expansion in invasive mosquitofish (Gambusia spp.)

    No full text
    Aim: Formerly introduced for their presumed value in controlling mosquito-borne diseases, the two mosquitofish Gambusia affinis and G. holbrooki (Poeciliidae) are now among the world's most widespread invasive alien species, negatively impacting aquatic ecosystems around the world. These inconspicuous freshwater fish are, once their presence is noticed, difficult to eradicate. It is, therefore, of utmost importance to assess their geographic potential and to identify their likely ability to persist under novel climatic conditions. Location Global. Methods We build species distribution models using occurrence data from the native and introduced distribution ranges to identify putative niche shifts and further ascertain the areas climatically suitable for the establishment and possible spread of mosquitofish. Results We found significant niche expansions into climatic regions outside their natural climatic conditions, emphasizing the importance of integrating climatic niches of both native and invasive ranges into projections. In particular, there was a marked shift toward tropical regions in Asia and a clear niche shift of European G. holbrooki. This ecological flexibility partly explains the massive success of the two species, and substantially increases the risk for further range expansion. We also showed that the potential for additional expansion resulting from climate change is enormous—especially in Europe. Main conclusions Despite the successful invasion history and ongoing range expansions, many countries still lack proper preventive measures. Thus, we urge policy makers to carefully evaluate the risk both mosquitofish pose to a particular area and to initiate appropriate management strategies

    Spatial and temporal distribution patterns of tick-borne diseases (Tick-borne Encephalitis and Lyme Borreliosis) in Germany

    No full text
    Background: In the face of ongoing climate warming, vector-borne diseases are expected to increase in Europe, including tick-borne diseases (TBD). The most abundant tick-borne diseases in Germany are Tick-Borne Encephalitis (TBE) and Lyme Borreliosis (LB), with Ixodes ricinus as the main vector. Methods: In this study, we display and compare the spatial and temporal patterns of reported cases of human TBE and LB in relation to some associated factors. The comparison may help with the interpretation of observed spatial and temporal patterns. Results: The spatial patterns of reported TBE cases show a clear and consistent pattern over the years, with many cases in the south and only few and isolated cases in the north of Germany. The identification of spatial patterns of LB disease cases is more difficult due to the different reporting practices in the individual federal states. Temporal patterns strongly fluctuate between years, and are relatively synchronized between both diseases, suggesting common driving factors. Based on our results we found no evidence that weather conditions affect the prevalence of both diseases. Both diseases show a gender bias with LB bing more commonly diagnosed in females, contrary to TBE being more commonly diagnosed in males. Conclusion: For a further investigation of of the underlying driving factors and their interrelations, longer time series as well as standardised reporting and surveillance system would be required
    corecore