27 research outputs found

    Biological efficacy of low versus medium dose aspirin after coronary surgery: results from a randomized trial [NCT00262275]

    Get PDF
    BACKGROUND: The beneficial effect of aspirin after coronary surgery is established; however, a recent study reported the inability of low doses (100 mg) to inhibit postoperative platelet function. We conducted a double-blind randomised trial to establish the efficacy of low dose aspirin and to compare it against medium dose aspirin. METHODS: Patients undergoing coronary surgery were invited to participate and consenting patients were randomised to 100 mg or 325 mg of aspirin daily for 5 days. Our primary outcome was the difference in platelet aggregation (day 5 – baseline) using 1 μg/ml of collagen. Secondary outcomes were differences in EC50 of collagen, ADP and epinephrine (assessed using the technique of Born). RESULTS: From September 2002 to April 2004, 72 patients were randomised; 3 patients discontinued, leaving 35 and 34 in the low and medium dose aspirin arms respectively. The mean aggregation (using 1.1 μg/ml of collagen) was reduced in both the medium and low dose aspirin arms by 37% and 36% respectively. The baseline adjusted difference (low – medium) was 6% (95% CI -3 to 14; p = 0.19). The directions of the results for the differences in EC50 (low – medium) were consistent for collagen, ADP and epinephrine at -0.07 (-0.53 to 0.40), -0.08 (-0.28 to 0.11) and -4.41 (-10.56 to 1.72) respectively, but none were statistically significant. CONCLUSION: Contrary to recent findings, low dose aspirin is effective and medium dose aspirin did not prove superior for inhibiting platelet aggregation after coronary surgery

    Multi-Messenger Astronomy with Extremely Large Telescopes

    Get PDF
    The field of time-domain astrophysics has entered the era of Multi-messenger Astronomy (MMA). One key science goal for the next decade (and beyond) will be to characterize gravitational wave (GW) and neutrino sources using the next generation of Extremely Large Telescopes (ELTs). These studies will have a broad impact across astrophysics, informing our knowledge of the production and enrichment history of the heaviest chemical elements, constrain the dense matter equation of state, provide independent constraints on cosmology, increase our understanding of particle acceleration in shocks and jets, and study the lives of black holes in the universe. Future GW detectors will greatly improve their sensitivity during the coming decade, as will near-infrared telescopes capable of independently finding kilonovae from neutron star mergers. However, the electromagnetic counterparts to high-frequency (LIGO/Virgo band) GW sources will be distant and faint and thus demand ELT capabilities for characterization. ELTs will be important and necessary contributors to an advanced and complete multi-messenger network.Comment: White paper submitted to the Astro2020 Decadal Surve

    Optimization of the Observing Cadence for the Rubin Observatory Legacy Survey of Space and Time: A Pioneering Process of Community-focused Experimental Design

    Get PDF
    © 2021. The Author(s). Published by the American Astronomical Society. This work may be used under the terms of the Creative Commons Attribution 4.0 licence. https://creativecommons.org/licenses/by/4.0/Vera C. Rubin Observatory is a ground-based astronomical facility under construction, a joint project of the National Science Foundation and the U.S. Department of Energy, designed to conduct a multipurpose 10 yr optical survey of the Southern Hemisphere sky: the Legacy Survey of Space and Time. Significant flexibility in survey strategy remains within the constraints imposed by the core science goals of probing dark energy and dark matter, cataloging the solar system, exploring the transient optical sky, and mapping the Milky Way. The survey’s massive data throughput will be transformational for many other astrophysics domains and Rubin’s data access policy sets the stage for a huge community of potential users. To ensure that the survey science potential is maximized while serving as broad a community as possible, Rubin Observatory has involved the scientific community at large in the process of setting and refining the details of the observing strategy. The motivation, history, and decision-making process of this strategy optimization are detailed in this paper, giving context to the science-driven proposals and recommendations for the survey strategy included in this Focus Issue.Peer reviewedFinal Published versio

    Multi-Messenger Astronomy with Extremely Large Telescopes

    Get PDF
    The field of time-domain astrophysics has entered the era of Multi-messenger Astronomy (MMA). One key science goal for the next decade (and beyond) will be to characterize gravitational wave (GW) and neutrino sources using the next generation of Extremely Large Telescopes (ELTs). These studies will have a broad impact across astrophysics, informing our knowledge of the production and enrichment history of the heaviest chemical elements, constrain the dense matter equation of state, provide independent constraints on cosmology, increase our understanding of particle acceleration in shocks and jets, and study the lives of black holes in the universe. Future GW detectors will greatly improve their sensitivity during the coming decade, as will near-infrared telescopes capable of independently finding kilonovae from neutron star mergers. However, the electromagnetic counterparts to high-frequency (LIGO/Virgo band) GW sources will be distant and faint and thus demand ELT capabilities for characterization. ELTs will be important and necessary contributors to an advanced and complete multi-messenger network

    The Time-domain Spectroscopic Survey: Target Selection for Repeat Spectroscopy

    Full text link

    Clopidogrel did not inhibit platelet function early after coronary bypass surgery: A prospective randomized trial.

    Get PDF
    OBJECTIVE: Although the beneficial effect of aspirin prescription after coronary surgery has been established, the efficacy of clopidogrel has never been compared with that of aspirin in the critical early postoperative period. We therefore conducted a prospective, double-blind, randomized controlled trial to compare the efficacies of these antiplatelet regimens. METHODS: Patients undergoing elective primary coronary artery bypass surgery were invited to participate. After the operation, patients were randomized to receive 100 mg aspirin, 325 mg aspirin, or 75 mg clopidogrel tablets daily for 5 days. Our primary outcome measure was platelet aggregation on day 5, expressed as percentage of baseline. Assessment of platelet aggregation was undertaken with the technique of Born. RESULTS: From September 2002 to July 2003, a total of 54 patients were randomized into the study. There were 2 self-withdrawals and 2 protocol violations, leaving 50 patients for analysis, 34 in the aspirin group and 16 in the clopidogrel arm. Compared with baseline, the mean percentage aggregations with collagen on day 5 were 56% for aspirin and 99% for clopidogrel. The mean difference between the two arms was 42% (95% confidence interval 27%-56%) in favor of aspirin. At the same time point, the effective concentration to inhibit 50% aggregation in the samples from patients randomly assigned to receive clopidogrel were not raised for our entire panel of agonists (changes of -0.04 microg/L for collagen, -0.01 micromol/L for epinephrine, and -0.02 micromol/L for adenosine diphosphate). CONCLUSION: Clopidogrel, unlike aspirin, did not inhibit platelet aggregation in the first 5 postoperative days and therefore should not be used as a sole antiplatelet agent early after coronary surgery

    Optimizing serendipitous detections of kilonovae: cadence and filter selection

    No full text
    The rise of multimessenger astronomy has brought with it the need to exploit all available data streams and learn more about the astrophysical objects that fall within its breadth. One possible avenue is the search for serendipitous optical/near-infrared counterparts of gamma-ray bursts (GRBs) and gravitational-wave (GW) signals, known as kilonovae. With surveys such as the Zwicky Transient Facility (ZTF), which observes the sky with a cadence of ∼3 d, the existing counterpart locations are likely to be observed; however, due to the significant amount of sky to explore, it is difficult to search for these fast-evolving candidates. Thus, it is beneficial to optimize the survey cadence for realtime kilonova identification and enable further photometric and spectroscopic observations. We explore how the cadence of wide field-of-view surveys like ZTF can be improved to facilitate such identifications. We show that with improved observational choices, e.g. the adoption of three epochs per night on a ∼nightly basis, and the prioritization of redder photometric bands, detection efficiencies improve by about a factor of two relative to the nominal cadence. We also provide realistic hypothetical constraints on the kilonova rate as a form of comparison between strategies, assuming that no kilonovae are detected throughout the long-term execution of the respective observing plan. These results demonstrate how an optimal use of ZTF increases the likelihood of kilonova discovery independent of GWs or GRBs, thereby allowing for a sensitive search with less interruption of its nominal cadence through Target of Opportunity programs
    corecore