141 research outputs found

    From exploration to remediation: A microbial perspective for innovation in mining

    Get PDF
    As society transitions to low-carbon, renewable energy resources, the demand for metals and minerals is set to increase. Massive quantities of base metals and mineral materials (for example, silica and concrete) along with smaller quantities of precious metals will be required for the construction of wind turbines, solar panels and battery storage facilities to meet the demands of the ‘Electric Planet’ of the future. Harnessing microbe-mineral-metal interactions may offer many opportunities to improve some mining practises and support the long-term sustainability of mining. As easily exploitable, high-grade deposits are becoming increasingly depleted there is a need for new technologies to improve exploration and mining strategies. Microorganisms are ubiquitous and diverse, surviving in almost all environments in the Earth's crust and recent advances in molecular techniques have enabled scientists to study these communities is extraordinary detail. Microorganisms also interact directly with their environment; both responding to and changing the environment around them. These responses and their influences on the surrounding environment are preserved within their genome (a complete set of the DNA of the microorganism). Here, we discuss using state-of-the-art sequencing techniques to identify key microbial genes that have been demonstrated to correlate with metal concentrations. These genetic-based bioindicators may provide additional tools to guide and improve the success rate of mineral exploration programmes. Advances in molecular techniques will also improve existing biohydrometallurgical techniques and expand the commodity range for which biohydrometallurgy are currently economically viable. Finally, microorganisms may be used in a number of strategies for mine remediation; specifically, we review in detail microbially accelerated carbon capture and storage strategies and mine waste stabilisation

    Using whole rock and in situ pyrite chemistry to evaluate authigenic and hydrothermal controls on trace element variability in a Zn mineralized Proterozoic subbasin

    Get PDF
    The mid-Proterozoic stratigraphy of the McArthur Basin (Australia) contains some of the most well-preserved sedimentary rocks of Precambrian age, which are also host to giant, clastic dominant (CD-type) massive sulfide Zn deposits. The most recently discovered CD-type deposit (the Teena deposit) is located in the Teena subbasin and hosted by the 1.64 Ga Barney Creek Formation. The Teena subbasin, therefore, provides the perfect natural laboratory for evaluating authigenic and hydrothermal controls on trace element (TE) variability, both of which contribute to paleoenvironmental reconstructions and ore deposit models. As the Teena deposit formed beneath the paleoseafloor, this also provides the opportunity to evaluate TE zonation around a fossilized subseafloor replacement hydrothermal system. In situ laser ablation inductively coupled mass spectrometry (LA-ICP-MS) has been used to define compositional end members in diagenetic and hydrothermal pyrite. The overgrowth of hydrothermal sulfides on diagenetic pyrite is associated with TE anomalism (Tl, Pb, As, Zn) that extends > 100 meters above the main high grade sulfide mineralization the Teena subbasin. The vertical zonation in TEs is consistent with the infiltration of hydrothermal fluids into overlying hangingwall sediments that were undergoing diagenesis. Bulk rock lithogeochemical data record covariation between total organic carbon (TOC) and a suite of TEs (Mo, Co, Ni, V). We suggest this was caused by local hydrographic factors during deposition of the Barney Creek Formation. High TOC/P molar ratios, resulting from regeneration of P in a euxinic water column, are associated with an interval overlying the main maximum flooding surface in the subbasin. The relationships between TOC, P and TEs resemble the redox architecture of a silled basin rather than an open marine margin. Sulfidic conditions developed during periods of high productivity, which were linked to nutrient supply that was enhanced by connectivity with surrounding water masses. The evidence of redox bistability, involving a delicate balance between ferruginous (anoxic, non-sulfidic) and euxinic (sulfidic) conditions, is consistent with recent models for other mid-Proterozoic sedimentary units. Nevertheless, there was a strong localised (101 km2) control on the authigenic and hydrothermal TE chemistry of the Barney Creek Formation in the Teena subbasin, which highlights a key challenge when extrapolating from data collected in partially restricted intracontinental marine settings

    Pyrite chemistry records a multistage ore forming system at the Proterozoic George Fisher massive sulfide Zn-Pb-Ag deposit, Mount Isa, Australia

    Get PDF
    Trace element (TE) analysis of pyrite via LA-ICP-MS can be used to reconstruct the conditions of pyrite formation in complex mineral systems. The Carpentaria province in northern Australia is host to some of the world’s highest value Zn-Pb (+Ag, Cu) deposits. The genesis of many of these deposits is controversial, with competing models of single-vs. multi-stage ore formation. In this study, LA-ICP-MS data of paragenetically constrained pyrite from the George Fisher Zn-Pb-Ag deposit has been analysed to investigate the chemistry of different stages of ore formation. Pyrite from correlative unmineralized host rocks has also been analysed to investigate evidence of distal hydrothermal anomalism. All LA-ICP-MS data have been statistically evaluated (principal component analysis) and interpreted together with whole rock lithogeochemical data of the same samples. Pre-ore diagenetic pyrite is compositionally similar to other Proterozoic diagenetic pyrite, with some evidence of minor hydrothermal anomalism that with further analysis could help define distal alteration. Pyrite from the different ore stages are compositionally distinct, consistent with a multi-stage system. Ore stage 1 pyrite exceeds background contents of Co, Cu, Zn, As, Ag, Sb, Tl, and Pb and has elevated Co/Ni ratios, whereas only Ni and Co are above background abundances in ore stage 2 and 3 pyrite, of which only ore stage 3 pyrite has high Co/Ni ratios. Ore stage 1 pyrite has a similar composition to hydrothermal pyrite in the undeformed northern Carpentaria CD-type deposits and was likely syn-diagenesis. Ore stage 2 was syn-deformation, and resulted in replacement and recrystallization of pre-existing pyrite, and the expulsion of incompatible TEs. Ore stage 3 formed via a later Cu-Zn-Pb mineralizing event that resulted in a new geochemically distinct generation of Co-rich pyrite. Overall, this study demonstrates the value of paragenetically-constrained pyrite TE data for refining genetic models in complex sediment hosted mineral systems

    Pyrite chemistry records a multistage ore forming system at the Proterozoic George Fisher massive sulfide Zn-Pb-Ag deposit, Mount Isa, Australia

    Get PDF
    Trace element (TE) analysis of pyrite via LA-ICP-MS can be used to reconstruct the conditions of pyrite formation in complex mineral systems. The Carpentaria province in northern Australia is host to some of the world’s highest value Zn-Pb (+Ag, Cu) deposits. The genesis of many of these deposits is controversial, with competing models of single-vs. multi-stage ore formation. In this study, LA-ICP-MS data of paragenetically constrained pyrite from the George Fisher Zn-Pb-Ag deposit has been analysed to investigate the chemistry of different stages of ore formation. Pyrite from correlative unmineralized host rocks has also been analysed to investigate evidence of distal hydrothermal anomalism. All LA-ICP-MS data have been statistically evaluated (principal component analysis) and interpreted together with whole rock lithogeochemical data of the same samples. Pre-ore diagenetic pyrite is compositionally similar to other Proterozoic diagenetic pyrite, with some evidence of minor hydrothermal anomalism that with further analysis could help define distal alteration. Pyrite from the different ore stages are compositionally distinct, consistent with a multi-stage system. Ore stage 1 pyrite exceeds background contents of Co, Cu, Zn, As, Ag, Sb, Tl, and Pb and has elevated Co/Ni ratios, whereas only Ni and Co are above background abundances in ore stage 2 and 3 pyrite, of which only ore stage 3 pyrite has high Co/Ni ratios. Ore stage 1 pyrite has a similar composition to hydrothermal pyrite in the undeformed northern Carpentaria CD-type deposits and was likely syn-diagenesis. Ore stage 2 was syn-deformation, and resulted in replacement and recrystallization of pre-existing pyrite, and the expulsion of incompatible TEs. Ore stage 3 formed via a later Cu-Zn-Pb mineralizing event that resulted in a new geochemically distinct generation of Co-rich pyrite. Overall, this study demonstrates the value of paragenetically-constrained pyrite TE data for refining genetic models in complex sediment hosted mineral systems

    Stratiform Host-Rock Replacement via Self-Sustaining Reactions in a Clastic-Dominated (CD-type) Zn Deposit

    Get PDF
    Stratiform to stratabound replacement of a mixed siliciclastic-carbonate host rock is a defining characteristic of many sediment-hosted base metal deposits. Mineralized rocks in clastic-dominated (CD-type) Zn-Pb ore deposits, which represent our highest value base metal resources, are generally thin (101 m), laterally extensive (103 m), and stratiform to stratabound in fine-grained siltstone and mudstone facies. At the recently discovered Teena CD-type Zn-Pb deposit (Proterozoic Carpentaria province, Australia), the host rock was undergoing burial diagenesis when altered and mineralized by hydrothermal fluids that moved up to 2 km lateral to the fluid input conduit (growth fault) through intraformational intervals. In much of the deposit, carbonate dissolution was an important reaction permeability control, although significant amounts of mineralization also occur in carbonate-free siliciclastic beds. In this study, transmission electron microscopy (TEM) data has been generated on a drill core sample that preserves a sharp reaction front between mineralized and unmineralized domains of the fine-grained siliciclastic compositional end member (carbonate free). Petrographic and mineralogical data provide evidence that oxidized hydrothermal fluids moved through the protolith via reaction permeability that developed from feldspar dissolution. The nature of reactive fluid flow was determined by reactions that took place at the fluid-mineral interface. Pyrite formation during the earliest stage of the hydrothermal paragenesis increased the mineral reactive surface area in the protolith. Acidity was then generated in situ via self-sustaining reactions involving pyrite oxidation, transient Fe sulfate formation, and sphalerite precipitation, which provided positive feedbacks to enhance porosity creation and further fluid infiltration and mineralization. In the absence of carbonate, however, ore fluid pH was buffered by K-feldspar dissolution (~4.5), thereby ensuring sphalerite precipitation was not inhibited under more acidic conditions. All CD-type deposits in the Carpentaria province are hosted by a protolith comprising carbonate, K-feldspar, pyrite, and organic matter; these phases set the boundary conditions for the development of self-sustaining reactions during ore formation. Importantly, these self-sustaining reactions represent a Goldilocks zone for ore formation that is applicable to other sediment-hosted deposits that formed via replacement of mixed siliciclastic-carbonate host rocks (e.g., stratiform Cu)

    Pyrite chemistry records a multistage ore forming system at the Proterozoic George Fisher massive sulfide Zn-Pb-Ag deposit, Mount Isa, Australia

    Get PDF
    Trace element (TE) analysis of pyrite via LA-ICP-MS can be used to reconstruct the conditions of pyrite formation in complex mineral systems. The Carpentaria province in northern Australia is host to some of the world’s highest value Zn-Pb (+Ag, Cu) deposits. The genesis of many of these deposits is controversial, with competing models of single-vs. multi-stage ore formation. In this study, LA-ICP-MS data of paragenetically constrained pyrite from the George Fisher Zn-Pb-Ag deposit has been analysed to investigate the chemistry of different stages of ore formation. Pyrite from correlative unmineralized host rocks has also been analysed to investigate evidence of distal hydrothermal anomalism. All LA-ICP-MS data have been statistically evaluated (principal component analysis) and interpreted together with whole rock lithogeochemical data of the same samples. Pre-ore diagenetic pyrite is compositionally similar to other Proterozoic diagenetic pyrite, with some evidence of minor hydrothermal anomalism that with further analysis could help define distal alteration. Pyrite from the different ore stages are compositionally distinct, consistent with a multi-stage system. Ore stage 1 pyrite exceeds background contents of Co, Cu, Zn, As, Ag, Sb, Tl, and Pb and has elevated Co/Ni ratios, whereas only Ni and Co are above background abundances in ore stage 2 and 3 pyrite, of which only ore stage 3 pyrite has high Co/Ni ratios. Ore stage 1 pyrite has a similar composition to hydrothermal pyrite in the undeformed northern Carpentaria CD-type deposits and was likely syn-diagenesis. Ore stage 2 was syn-deformation, and resulted in replacement and recrystallization of pre-existing pyrite, and the expulsion of incompatible TEs. Ore stage 3 formed via a later Cu-Zn-Pb mineralizing event that resulted in a new geochemically distinct generation of Co-rich pyrite. Overall, this study demonstrates the value of paragenetically-constrained pyrite TE data for refining genetic models in complex sediment hosted mineral systems

    Palladium, platinum, selenium and tellurium enrichment in the Jiguanzui-Taohuazui Cu-Au Deposit, Edong Ore District: Distribution and comparison with Cu-Mo deposits

    Get PDF
    The Jiguanzui-Taohuazui Cu-Au deposit is located in the Edong ore district, Middle–Lower Yangtze River metallogenic belt, eastern China. The deposit is palladium, platinum, selenium and tellurium enriched; however, the distribution of these metals is unclear. Three mineral assemblages of ore in the deposit have been identified, namely: a magnetite-bornite-chalcopyrite-(hematite) assemblage (Mt-Bn-Cp-Hm), a chalcopyrite-pyrite assemblage (Cp-Py), and a pyrite-chalcopyrite-(sphalerite) assemblage (Py-Cp-Sph). Forty-eight bulk ore assay results show high concentrations of up to 66.9 ppb for Pd, 5.9 ppb for Pt, 150 ppm for Se and 249 ppm for Te. The high temperature Mt-Bn-Cp-Hm assemblage (530–380 °C) is enriched in Pt and Pd, whereas the Py-Cp-Sph assemblage in the marble-replacement ore (300–220 °C) hosts the major Se and Te mineralization. Palladium, Pt, and Se are mostly hosted in sulfide minerals, whereas Te is hosted in tellurides and Bi-Te-S sulfosalt minerals. Building on previous experimental and thermodynamic calculations, we propose the major controls on the Pd and Pt distribution in the deposit are temperature and salinity, whereas the Se and Te mineralization is promoted by the precipitation of major sulfide phases such as pyrite, chalcopyrite and sphalerite. A comparison of the ores from the Jiguanzui-Taohuazui Cu-Au and Tongshankou Cu-Mo deposits in the Edong ore district shows that the Cu-Au deposit has higher PGE and Te, but similar Se concentrations. This scenario is consistent with the average grades and bulk ore contents of these elements from global (oxidized) porphyry (±skarn) Cu deposits. This suggests that the saturation of magmatic sulfides in the magma chamber as a result of higher proportion of crustal S-rich and/or reduced material contamination can be detrimental for PGE and Te enrichment processes, and thus, Cu-Au porphyry (±skarn) deposits have more potential for higher Pd and Te concentrations than the Cu-Mo deposits

    The Formation of Highly Positive δ34S Values in Late Devonian Mudstones: Microscale Analysis of Pyrite (δ34S) and Barite (δ34S, δ18O) in the Canol Formation (Selwyn Basin, Canada)

    Get PDF
    The sulfur isotope composition of pyrite in marine sedimentary rocks is often difficult to interpret due to a lack of precise isotopic constraints for coeval sulfate. This study examines pyrite and barite in the Late Devonian Canol Formation (Selwyn Basin, Canada), which provides an archive of δ34S and δ18O values during diagenesis. Scanning electron microscopy (SEM) has been combined with microscale secondary ion mass spectrometry (SIMS) analysis (n = 1,032) of pyrite (δ34S) and barite (δ34S and δ18O) on samples collected from nine stratigraphic sections of the Canol Formation. Two paragenetic stages of pyrite and barite formation have been distinguished, both replaced by barium carbonate and feldspar. The δ34Sbarite and δ18Obarite values from all sections overlap, between +37.1‰ and +67.9‰ (median = +45.7‰) and +8.8‰ and +23.9‰ (median = +20.0‰), respectively. Barite morphologies and isotopic values are consistent with precipitation from diagenetically modified porewater sulfate (sulfate resupply << sulfate depletion) during early diagenesis. The two pyrite generations (Py-1 and Py-2) preserve distinct textures and end-member isotopic records. There is a large offset from coeval Late Devonian seawater sulfate in the δ34Spyrite values of framboidal pyrite (-29.4‰ to -9.3‰), consistent with dissimilatory microbial sulfate reduction (MSR) during early diagenesis. The Py-2 is in textural equilibrium with barite generation 2 (Brt-2) and records a broad range of more positive δ34SPy-2 values (+9.4‰ to + 44.5‰). The distinctive highly positive δ34Spyrite values developed from sulfate limited conditions around the sulfate methane transition zone (SMTZ). We propose that a combination of factors, including low sulfate concentrations, MSR, and sulfate reduction coupled to anaerobic oxidation of methane (SR-AOM), led to the formation of highly positive δ34Spyrite and δ34Sbarite values in the Canol Formation. The presence of highly positive δ34Spyrite values in other Late Devonian sedimentary units indicate that diagenetic pyrite formation at the SMTZ may be a more general feature of other Lower Paleozoic basins

    Carbon and oxygen isotope microanalysis of calcite in the Permian Kupferschiefer system, Saale subbasin, eastern Germany

    Get PDF
    The Kupferschiefer district in Central Europe contains some of the world's highest-grade sediment-hosted stratiform Cu (SSC) deposits. In the Saale subbasin (eastern Germany), high-grade sulfides formed via replacement of calcite cement in the continental sandstones of the uppermost Rotliegend (S1), the overlying organic-rich marine mudstones of the Kupferschiefer (T1) and the Zechstein Limestone (Ca1) units. The spatial distribution of the calcite cement, therefore, had a fundamental role to play in the Cu mineralizing system. In this study, we investigate the origin of the calcite cement (and crosscutting calcite veins) using detailed petrography (cathodoluminescence, CL; scanning electron microscopy, SEM), major element chemistry (electron probe microanalyzer, EPMA), and secondary ion mass spectrometry (SIMS) microanalyses of δ13C and δ18O values in drill core samples (n = 47) from the Saale subbasin. The calcite cement in the S1, T1 and Ca1 has a similar CL response and major element chemistry, suggestive of a common origin. Overlapping δ13C and δ18O values in calcite cement in samples from the S1 and T1 in the Sangerhausen and Wallendorf drill cores also suggest that the calcite cement was derived from fluids of similar composition. The low δ13C values of calcite cement in samples from the S1 (−13‰ to 4.3‰, VPDB) and T1 (−10‰ to 0.7‰) indicates carbonate alkalinity was sourced mainly from seawater-derived fluids and the oxidation of organic matter. The wide range of δ18O values in the calcite cement in the S1 (∼18‰ to 31‰, VSMOW) and T1 (∼ 22‰ to 31‰) samples suggest they are derived from pore fluids with a chemical composition influenced by early diagenetic alteration of detrital clasts, mainly dissolution of volcanic rock fragments, with minor contributions from the influx of meteoric waters and evaporated seawater. The negative δ13C values (down to −15‰) in calcite veins from the T1 and Ca1 indicate sources of carbonate alkalinity derived from organic matter degradation. Our data demonstrate that no isotopic hydrothermal alteration haloes can be inferred from the δ13C and δ18O values in calcite cement associated with the high-grade sulfide mineralization. The lack of systematic isotopic variability in the calcite cement likely indicates the mineralizing fluid flux or temperature was not sufficient to overprint the background sources of isotopic variability, which may help to explain the modest size of SSC deposits in this part of the Kupferschiefer district

    The mineralogical and lithogeochemical footprint of the George Fisher Zn-Pb-Ag massive sulphide deposit in the Proterozoic Urquhart Shale Formation, Queensland, Australia

    Get PDF
    The Proterozoic Carpentaria Province (McArthur basin and Mount Isa Inlier) in northern Australia comprises a number of world class clastic dominated (CD-type) Zn-Pb massive sulphide deposits, formally known as SEDEX deposits. In order to identify the geochemical footprint of any mineralizing system it is necessary to characterize compositional variability of the host rock to mineralization. In the southern Carpentaria, establishing the baseline composition of the host rock is complicated by varying degrees of tectonic overprint, a lack of metamorphic indicator minerals, and the overall size of the ore forming systems. In this study, samples from drill-holes intersecting the main ore bodies at the world class George Fisher CD-type massive sulphide deposit have been compared to samples from a drill-hole intersecting barren, correlative lithologies of the Urquhart Shale Formation (ca. 1654 Ma). Bulk rock lithogeochemical (X-ray fluorescence, inductively coupled plasma mass spectrometry and LECO) and mineralogical (X-ray diffraction) analyses have been combined with petrographic observations to (1) establish the baseline composition of the Urquhart Shale Formation and (2) determine the geochemical and mineralogical footprint of the CD-type system at George Fisher. The absence of metamorphic indicator minerals, combined with the preservation of illite in un-mineralized Urquhart Shale, suggests that in this part of the Mount Isa area, the host rocks did not reach greenschist facies conditions (>300 degrees C). Chlorite in the un-mineralized Urquhart Shale is very fine grained (<= 10 mu m) within interstitial pore spaces with other phyllosilicates (e.g., illite), and is interpreted to be diagenetic in origin. Relative to the un-mineralized Urquhart Shale, the first stage of sulphide mineralization (Zn-dominated, stratabound) at George Fisher is associated with decreased abundances of albite, chlorite, and calcite, and higher abundances of dolomite and phyllosilicates (muscovite and phlogopite). These mineralogical transformations are associated with strong minor and trace element depletion (Sr and Na) and enrichment (Tl and Mn). An element index based on this suite of elements (GF index = 10(400Tl+Mn/10Sr+Na)) is highly effective in differentiating between the background Urquhart Shale Formation and the alteration footprint at George Fisher and may provide an additional tool for geochemical exploration programmes in the Mount Isa area. This study affirms the benefit of combining lithogeochemical, mineralogical, and petrographic data in order to understand the host rock baseline composition and the alteration footprint of Carpentaria CD-type massive sulphide systems
    • …
    corecore