229 research outputs found

    Semiclassical description of resonant tunneling

    Full text link
    We derive a semiclassical formula for the tunneling current of electrons trapped in a potential well which can tunnel into and across a wide quantum well. The calculations idealize an experimental situation where a strong magnetic field tilted with respect to an electric field is used. The resulting semiclassical expression is written as the sum over special periodic orbits which hit both walls of the quantum well and are perpendicular to the first wall.Comment: LaTeX, 8 page

    Workplace personal exposure to respirable PM fraction: a study in sixteen indoor environments

    Get PDF
    AbstractThe present paper focuses on respirable particulate matter (RPM) measurements conducted at the breathing zone of adult volunteers in sixteen different working environments: two offices, a house, a chemical laboratory, a non–smoking shop, a pharmacy store, a car garage, a hairdresser's store, a photocopy store, a taxi, a gym, a mall, a restaurant, a bar, a kiosk and a school. The sixteen different cases were categorized according to the location, the type of the activities taking place indoors, the number of occupants, the proximity to heavy traffic roads, the ventilation pattern etc. According to the results, the maximum particle concentration (in average 285ÎŒg m−3) was recorded at the hairdresser store while the minimum concentration was measured in the cases of the housewife and the employee in the non–smoking shop (in average 30ÎŒg m−3). The results indicated smoking as a factor which strongly influences the exposure levels of both smokers and passive smokers. Furthermore, it was found that the building ventilation pattern comprises an important factor influencing the exposure levels especially in cases of buildings with great number of visitors (resuspension) and smoking

    Shot noise and spin-orbit coherent control of entangled and spin polarized electrons

    Get PDF
    We extend our previous work on shot noise for entangled and spin polarized electrons in a beam-splitter geometry with spin-orbit (\textit{s-o}) interaction in one of the incoming leads (lead 1). Besides accounting for both the Dresselhaus and the Rashba spin-orbit terms, we present general formulas for the shot noise of singlet and triplets states derived within the scattering approach. We determine the full scattering matrix of the system for the case of leads with \textit{two} orbital channels coupled via weak \textit{s-o} interactions inducing channel anticrossings. We show that this interband coupling coherently transfers electrons between the channels and gives rise to an additional modulation angle -- dependent on both the Rashba and Dresselhaus interaction strengths -- which allows for further independent coherent control of the electrons traversing the incoming leads. We derive explicit shot noise formulas for a variety of correlated pairs (e.g., Bell states) and lead spin polarizations. Interestingly, the singlet and \textit{each} of the triplets defined along the quantization axis perpendicular to lead 1 (with the local \textit{s-o} interaction) and in the plane of the beam splitter display distinctive shot noise for injection energies near the channel anticrossings; hence, one can tell apart all the triplets, in addition to the singlet, through noise measurements. We also find that spin-orbit induced backscattering within lead 1 reduces the visibility of the noise oscillations, due to the additional partition noise in this lead. Finally, we consider injection of two-particle wavepackets into leads with multiple discrete states and find that two-particle entanglement can still be observed via noise bunching and antibunching.Comment: 30 two-column pages and 7 figure

    Transmission Properties of the oscillating delta-function potential

    Full text link
    We derive an exact expression for the transmission amplitude of a particle moving through a harmonically driven delta-function potential by using the method of continued-fractions within the framework of Floquet theory. We prove that the transmission through this potential as a function of the incident energy presents at most two real zeros, that its poles occur at energies nℏω+Δ∗n\hbar\omega+\varepsilon^* (0<Re(Δ∗)<ℏω0<Re(\varepsilon^*)<\hbar\omega), and that the poles and zeros in the transmission amplitude come in pairs with the distance between the zeros and the poles (and their residue) decreasing with increasing energy of the incident particle. We also show the existence of non-resonant "bands" in the transmission amplitude as a function of the strength of the potential and the driving frequency.Comment: 21 pages, 12 figures, 1 tabl

    Toy models of crossed Andreev reflection

    Full text link
    We propose toy models of crossed Andreev reflection in multiterminal hybrid structures containing out-of-equilibrium conductors. We apply the description to two possible experiments: (i) to a device containing a large quantum dot inserted in a crossed Andreev reflection circuit. (ii) To a device containing an Aharonov-Bohm loop inserted in a crossed Andreev reflection circuit.Comment: 5 pages, 9 figures, minor modification

    Chaos in Quantum Dots: Dynamical Modulation of Coulomb Blockade Peak Heights

    Full text link
    The electrostatic energy of an additional electron on a conducting grain blocks the flow of current through the grain, an effect known as the Coulomb blockade. Current can flow only if two charge states of the grain have the same energy; in this case the conductance has a peak. In a small grain with quantized electron states, referred to as a quantum dot, the magnitude of the conductance peak is directly related to the magnitude of the wavefunction near the contacts to the dot. Since dots are generally irregular in shape, the dynamics of the electrons is chaotic, and the characteristics of Coulomb blockade peaks reflects those of wavefunctions in chaotic systems. Previously, a statistical theory for the peaks was derived by assuming these wavefunctions to be completely random. Here we show that the specific internal dynamics of the dot, even though it is chaotic, modulates the peaks: because all systems have short-time features, chaos is not equivalent to randomness. Semiclassical results are derived for both chaotic and integrable dots, which are surprisingly similar, and compared to numerical calculations. We argue that this modulation, though unappreciated, has already been seen in experiments.Comment: 4 pages, 3 postscript figs included (2 color), uses epsf.st

    Acute Fulminant Colitis Caused by Idiopathic Mesenteric Inflammatory Veno-Occlusive Disease

    Get PDF
    Mesenteric inflammatory veno-occlusive disease (MIVOD) is an uncommon but important cause of bowel inflammation. MIVOD is characterised by lymphocytic inflammation and non-thrombotic occlusion of the mesenteric venules and veins. We present the case of a young man who presented with acute fulminant colitis, requiring colectomy. The differential diagnosis, pathogenesis and treatment are discussed. This case illustrates the rapid progression from ‘well’ to ‘colectomy’ that can occur with MIVOD. MIVOD should be considered in the differential diagnosis of colitis that does not respond to conventional medical treatment
    • 

    corecore