7 research outputs found

    Genomic and phenotypic analyses suggest moderate fitness differences among Zika virus lineages.

    No full text
    RNA viruses have short generation times and high mutation rates, allowing them to undergo rapid molecular evolution during epidemics. However, the extent of RNA virus phenotypic evolution within epidemics and the resulting effects on fitness and virulence remain mostly unknown. Here, we screened the 2015-2016 Zika epidemic in the Americas for lineage-specific fitness differences. We engineered a library of recombinant viruses representing twelve major Zika virus lineages and used them to measure replicative fitness within disease-relevant human primary cells and live mosquitoes. We found that two of these lineages conferred significant in vitro replicative fitness changes among human primary cells, but we did not find fitness changes in Aedes aegypti mosquitoes. Additionally, we found evidence for elevated levels of positive selection among five amino acid sites that define major Zika virus lineages. While our work suggests that Zika virus may have acquired several phenotypic changes during a short time scale, these changes were relatively moderate and do not appear to have enhanced transmission during the epidemic

    Temporary increase in circulating replication-competent latent HIV-infected resting CD4+ T cells after switch to an integrase inhibitor based antiretroviral regimenResearch in context

    No full text
    Summary: Background: The principal barrier to an HIV cure is the presence of the latent viral reservoir (LVR), which has been understudied in African populations. From 2018 to 2019, Uganda instituted a nationwide rollout of ART consisting of Dolutegravir (DTG) with two NRTI, which replaced the previous regimen of one NNRTI and the same two NRTI. Methods: Changes in the inducible replication-competent LVR (RC-LVR) of ART-suppressed Ugandans with HIV (n = 88) from 2015 to 2020 were examined using the quantitative viral outgrowth assay. Outgrowth viruses were examined for viral evolution. Changes in the RC-LVR were analyzed using three versions of a Bayesian model that estimated the decay rate over time as a single, linear rate (model A), or allowing for a change at time of DTG initiation (model B&C). Findings: Model A estimated the slope of RC-LVR change as a non-significant positive increase, which was due to a temporary spike in the RC-LVR that occurred 0–12 months post-DTG initiation (p < 0.005). This was confirmed with models B and C; for instance, model B estimated a significant decay pre-DTG initiation with a half-life of 6.9 years, and an ∼1.7-fold increase in the size of the RC-LVR post-DTG initiation. There was no evidence of viral failure or consistent evolution in the cohort. Interpretation: These data suggest that the change from NNRTI- to DTG-based ART is associated with a significant temporary increase in the circulating RC-LVR. Funding: Supported by the NIH (grant 1-UM1AI164565); Gilead HIV Cure Grants Program (90072171); Canadian Institutes of Health Research (PJT-155990); and Ontario Genomics-Canadian Statistical Sciences Institute

    Travel Surveillance and Genomics Uncover a Hidden Zika Outbreak during the Waning Epidemic

    No full text
    The Zika epidemic in the Americas has challenged surveillance and control. As the epidemic appears to be waning, it is unclear whether transmission is still ongoing, which is exacerbated by discrepancies in reporting. To uncover locations with lingering outbreaks, we investigated travel-associated Zika cases to identify transmission not captured by reporting. We uncovered an unreported outbreak in Cuba during 2017, a year after peak transmission in neighboring islands. By sequencing Zika virus, we show that the establishment of the virus was delayed by a year and that the ensuing outbreak was sparked by long-lived lineages of Zika virus from other Caribbean islands. Our data suggest that, although mosquito control in Cuba may initially have been effective at mitigating Zika virus transmission, such measures need to be maintained to be effective. Our study highlights how Zika virus may still be "silently" spreading and provides a framework for understanding outbreak dynamics. VIDEO ABSTRACT.status: publishe
    corecore