24 research outputs found

    The design of multi-band planar inverted-F antennas for mobile handsets with the aid of a novel genetic algorithm and their specific absorption rate

    Get PDF
    Wireless communications have progressed very rapidly in recent years and mobile handsets are becoming smaller and smaller. Present-day mobile cellular communication systems include combinations of the AMPS, GSM-900, DCS-l800, PCS-1900, UMTS, and WLANs in the 2.4GHz and 5.2GHz bands. User requirements for access to the various aforementioned wireless telecommunication services have resulted in a rapid technological push to unify these different systems in a drastically decreased size single mobile handset. All this combined with strict limitations set for the energy absorbed by the users of mobile terminals has created a need for improved antenna solutions and better understanding of small antennas. The objective of this thesis is to develop novel multi-band handset antenna design solutions to satisfy the specific bandwidth requirements of mobile cellular communication systems. [Continues.

    Interference Analysis for Vehicle-to-Vehicle Communications at 28 GHz

    Get PDF
    High capacity and ultra-reliable vehicular communication are going to be important aspects of beyond 5G communication networks. However, the vehicular communication problem becomes complex at a large scale when vehicles are roaming on the road, while simultaneously communicating with each other. Moreover, at higher frequencies (like 28 GHz), the dynamics of vehicular communication completely shift towards unpredictability and low-reliability. These factors may result in high packet error and a large amount of interference, resulting in regular disruptions in communications. A thorough understanding of performance variations is the key to moving towards the next generation of vehicular networks. With this intent, this article aims to provide a comprehensive interference analysis, wherein the closed-form expressions of packet error probability (PEP) and ergodic capacity are derived. Using the expression of the PEP, diversity analysis is provided which unveils the impact of channel nonlinearities on the performance of interference-constrained vehicular networks. The insights provided here are expected to pave the way for reliable and high capacity vehicular communication networks

    Low correlation multiple antenna system for mobile phone applications using novel decoupling slots in ground plane

    Get PDF
    A compact low profile multiple antenna system for multiple-input-multiple- output (MIMO) applications is proposed. The antenna system combines two monopole type printed antennas with a slotted ground plane for low correlation and high isolation characteristics. The main antenna covers the twelve wireless communication bands required for LTE, GSM, UMTS2110, Bluetooth, WiMAX and WLAN. The auxiliary antenna has a very small volume compared to the main one and covers the ultra-wideband (UWB) frequency range (3.74-12 GHz). The antennas are positioned at opposite ends of the system's ground in order to reduce the mutual coupling between them. The isolation maintained is better than 20 dB over the desired frequency bands, resulting in an envelope correlation coefficient of less than 0.08. The simulation results show good S-parameters, high gain and radiation efficiency, and relatively stable radiation patterns. Due to the compact size and the ultrawide bandwidth, the proposed multiple antenna system is suitable for communication handsets that have size limitations. Results are presented and discussed. © 2013 IEEE

    Human Activity and Motion Pattern Recognition within Indoor Environment Using Convolutional Neural Networks Clustering and Naive Bayes Classification Algorithms

    Get PDF
    Human Activity Recognition (HAR) systems are designed to read sensor data and analyse it to classify any detected movement and respond accordingly. However, there is a need for more responsive and near real-time systems to distinguish between false and true alarms. To accurately determine alarm triggers, the motion pattern of legitimate users need to be stored over a certain period and used to train the system to recognise features associated with their movements. This training process is followed by a testing cycle that uses actual data of different patterns of activity that are either similar or different to the training data set. This paper evaluates the use of a combined Convolutional Neural Network (CNN) and Naive Bayes for accuracy and robustness to correctly identify true alarm triggers in the form of a buzzer sound for example. It shows that pattern recognition can be achieved using either of the two approaches, even when a partial motion pattern is derived as a subset out of a full-motion path

    Efficient power control framework for small-cell heterogeneous networks

    Get PDF
    Heterogeneous networks are rapidly emerging as one of the key enablers of beyond fifth-generation (5G) wireless networks. It is gradually becoming clear to the network operators that existing cellular networks may not be able to support the traffic demands of the future. Thus, there is an upsurge in the interest of efficiently deploying small-cell networks for accommodating a growing number of user equipment (UEs). This work further extends the state-of-the-art by proposing an optimization framework for reducing the power consumption of small-cell base stations (BSs). Specifically, a novel algorithm has been proposed which dynamically switches off the redundant small-cell BSs based on the traffic demands of the network. Due to the dynamicity of the formulated problem, a new UE admission control policy has been presented when the problem becomes infeasible to solve. To validate the effectiveness of the proposed solution, the simulation results are compared with conventional techniques. It is shown that the proposed power control solution outperforms the conventional approaches both in terms of accommodating more UEs and reducing power consumption.publishe

    Study on the appropriate dimensions and position of slots and notches in the ground plane of planar monopole handset antenna for bandwidth enhancement

    Get PDF
    A slotted ground plane structure combined with a multiband planar monopole handset antenna for bandwidth enhancement and resonant modes tuning is presented. By simply inserting intelligent modifications using slots and notches to the system ground plane of an internal multiband handset antenna, a significant improvement in the bandwidths of lower bands LTE 700/GSM 850/GSM 900 and upper bands GSM 1800/1900, UMTS, LTE 2300/2500, WiMAX 3500, WLAN 2400/5200/5800 is achieved. The influences of the proposed slots and notches with different positions and dimensions on antenna performance are analyzed by means of simulations and parametric studies. Results show that the proposed ground plane modifications have improved the handset antenna performance to cover 12-band standard operations successfully

    Low correlation multiple antenna system for mobile phone applications using novel decoupling slots in ground plane

    Get PDF
    A compact low profile multiple antenna system for multiple-input-multiple- output (MIMO) applications is proposed. The antenna system combines two monopole type printed antennas with a slotted ground plane for low correlation and high isolation characteristics. The main antenna covers the twelve wireless communication bands required for LTE, GSM, UMTS2110, Bluetooth, WiMAX and WLAN. The auxiliary antenna has a very small volume compared to the main one and covers the ultra-wideband (UWB) frequency range (3.74-12 GHz). The antennas are positioned at opposite ends of the system's ground in order to reduce the mutual coupling between them. The isolation maintained is better than 20 dB over the desired frequency bands, resulting in an envelope correlation coefficient of less than 0.08. The simulation results show good S-parameters, high gain and radiation efficiency, and relatively stable radiation patterns. Due to the compact size and the ultrawide bandwidth, the proposed multiple antenna system is suitable for communication handsets that have size limitations. Results are presented and discussed. © 2013 IEEE

    Study on the appropriate dimensions and position of slots and notches in the ground plane of planar monopole handset antenna for bandwidth enhancement

    Get PDF
    A slotted ground plane structure combined with a multiband planar monopole handset antenna for bandwidth enhancement and resonant modes tuning is presented. By simply inserting intelligent modifications using slots and notches to the system ground plane of an internal multiband handset antenna, a significant improvement in the bandwidths of lower bands LTE 700/GSM 850/GSM 900 and upper bands GSM 1800/1900, UMTS, LTE 2300/2500, WiMAX 3500, WLAN 2400/5200/5800 is achieved. The influences of the proposed slots and notches with different positions and dimensions on antenna performance are analyzed by means of simulations and parametric studies. Results show that the proposed ground plane modifications have improved the handset antenna performance to cover 12-band standard operations successfully
    corecore