52 research outputs found

    MIR137 is the key gene mediator of the syndromic obesity phenotype of patients with 1p21.3 microdeletions.

    Get PDF
    BACKGROUND: Deletions in the long arm of chromosome 1 have been described in patients with a phenotype consisting primarily of obesity, intellectual disability and autism-spectrum disorder. The minimal region of overlap comprises two genes: DPYD and MIR137. CASE PRESENTATION: We describe a 10-year-old boy with syndromic obesity who carries a novel 1p21.3 deletion overlapping the critical region with the MIR137 gene only. CONCLUSIONS: This study suggests that MIR137 is the mediator of the obesity phenotype of patients carrying 1p21.3 microdeletions

    Sex hormones in autism: Androgens and estrogens differentially and reciprocally regulate RORA, a novel candidate gene for autism

    Get PDF
    Autism, a pervasive neurodevelopmental disorder manifested by deficits in social behavior and interpersonal communication, and by stereotyped, repetitive behaviors, is inexplicably biased towards males by a ratio of ∌4∶1, with no clear understanding of whether or how the sex hormones may play a role in autism susceptibility. Here, we show that male and female hormones differentially regulate the expression of a novel autism candidate gene, retinoic acid-related orphan receptor-alpha (RORA) in a neuronal cell line, SH-SY5Y. In addition, we demonstrate that RORA transcriptionally regulates aromatase, an enzyme that converts testosterone to estrogen. We further show that aromatase protein is significantly reduced in the frontal cortex of autistic subjects relative to sex- and age-matched controls, and is strongly correlated with RORA protein levels in the brain. These results indicate that RORA has the potential to be under both negative and positive feedback regulation by male and female hormones, respectively, through one of its transcriptional targets, aromatase, and further suggest a mechanism for introducing sex bias in autism

    Ergosterol isolated from cloud ear mushroom (Auricularia polytricha) attenuates bisphenol A-induced BV2 microglial cell inflammation.

    Full text link
    Bisphenol A (BPA) has been reported to have neurotoxic properties that may increase the risk of neurodegenerative diseases by inducing neuroinflammation. Auricularia polytricha (AP) is an edible mushroom with several medicinal properties. Herein, the anti-neuroinflammatory effects of AP extracts against BPA-induced inflammation of BV2 microglial cells were investigated. Hexane (APH) and ethanol (APE) extracts of AP inhibited BPA-induced neuroinflammation in BV2 microglia by reducing microglial activation and the expression of pro-inflammatory cytokines. These anti-inflammatory effects were regulated by the NF-ÎșB signaling pathway. In addition, APH and APE exhibited antioxidative effects by increasing the activity of the SOD-1 enzyme and restoring the accumulation of reactive oxygen species (ROS) in BPA-induced BV2 cells. Moreover, the conditioned medium prepared using BPA-induced BV2 cells demonstrated that the presence of APH or APE could attenuate ROS production in HT-22 cells. Further, ergosterol was isolated from APE and also showed anti-inflammatory and antioxidative activities. In conclusion, AP extracts and ergosterol attenuated neuroinflammation against BPA induction in BV2 microglial cells through the NF-ÎșB signaling pathway

    Ergosterol isolated from cloud ear mushroom (Auricularia polytricha) attenuates bisphenol A-induced BV2 microglial cell inflammation

    No full text
    © 2022 Elsevier LtdBisphenol A (BPA) has been reported to have neurotoxic properties that may increase the risk of neurodegenerative diseases by inducing neuroinflammation. Auricularia polytricha (AP) is an edible mushroom with several medicinal properties. Herein, the anti-neuroinflammatory effects of AP extracts against BPA-induced inflammation of BV2 microglial cells were investigated. Hexane (APH) and ethanol (APE) extracts of AP inhibited BPA-induced neuroinflammation in BV2 microglia by reducing microglial activation and the expression of pro-inflammatory cytokines. These anti-inflammatory effects were regulated by the NF-ÎșB signaling pathway. In addition, APH and APE exhibited antioxidative effects by increasing the activity of the SOD-1 enzyme and restoring the accumulation of reactive oxygen species (ROS) in BPA-induced BV2 cells. Moreover, the conditioned medium prepared using BPA-induced BV2 cells demonstrated that the presence of APH or APE could attenuate ROS production in HT-22 cells. Further, ergosterol was isolated from APE and also showed anti-inflammatory and antioxidative activities. In conclusion, AP extracts and ergosterol attenuated neuroinflammation against BPA induction in BV2 microglial cells through the NF-ÎșB signaling pathway.N
    • 

    corecore