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Abstract

Background: Deletions in the long arm of chromosome 1 have been described in patients with a phenotype
consisting primarily of obesity, intellectual disability and autism-spectrum disorder. The minimal region of overlap

comprises two genes: DPYD and MIR137.

Case presentation: We describe a 10-year-old boy with syndromic obesity who carries a novel 1p21.3 deletion

overlapping the critical region with the MIR137 gene only.

Conclusions: This study suggests that MIR137 is the mediator of the obesity phenotype of patients carrying 1p21.3

microdeletions.
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Background

Obesity is a complex disease that results from the inter-
actions of a variety of hereditary and environmental fac-
tors. Heritability for obesity is high (typically 0.4 to 0.7)
[1], comparable to that of other complex, polygenic dis-
eases such as autism [2]. In most individuals, the genetic
basis for obesity is complex and likely to involve the
interaction of multiple genes and gene-by-environment
interactions. However, there are rare examples of mono-
genic causes for obesity that provide insights to path-
ways that may account for more common causes of
obesity and indicate targets for therapeutic intervention.
These disorders include obesity syndromes such as
Prader Willi syndrome and Bardet—Biedl syndrome and
microdeletion/duplication syndromes such as 1p36 and
17p11.2, in which affected patients are usually identified
by additional phenotypes, such as intellectual disability
(ID), dysmorphic features or other developmental abnor-
malities. Gaining insight into genetic causes through the
study of obesity-related disorders has provided a more
comprehensive picture of the mechanisms that control
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food intake and energy balance related to the develop-
ment of obesity (e.g., SIM1).

Deletions in chromosome 1p21.3 have been reported
in a total of 12 individuals presenting with a variable
combination of ID, autism spectrum disorders (ASD)
and obesity [3—6]. The shortest region of overlap (SRO)
has been restricted to two genes: dihydropyrimidine
dehydrogenase (DPYD) and microRNA 137 (MIR137).
The DPYD encodes for the rate-limiting enzyme in the
catabolism of the pyrimidine bases, and mutations in
this gene cause DPYD deficiency (OMIM #274270), an
autosomal recessive disease of variable severity typically
characterized by the presence of childhood onset neuro-
logical problems, such as developmental delay and con-
vulsions. MIR137 encodes for miR-137, a microRNA
(miRNA) molecule involved in the post-transcriptional
regulation of genes [7].

In this study, we report an additional case carrying a
1p21.3 microdeletion that presented with ID, ASD, obes-
ity and additional clinical features. We propose the
MIR137 gene as the mediator of the obesity phenotype
that presents in patients carrying chromosome 1p21.3
microdeletions.
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Case presentation

The proband is a ten-year-old male and the first-born
child of healthy non-consanguineous parents. The family
history was unremarkable for neurological disorders, be-
havioral problems, and congenital anomalies.

He was born at 39 weeks of gestation via elective cae-
sarian section. His birth weight was 2800 g (10-25th cen-
tile) and his length, occipital frontal circumference and
APGAR scores were not reported but were said to be
normal. At birth, no medical problems were recorded.
Postnatally, his growth was normal; global psychomotor
delay was noted: the boy took his first steps at the age of
20 months and said his first words at the age of
36 months. In infancy, he had several episodes of febrile
convulsions, which spontaneously resolved at the age of
3 years. During a routine heart examination, a heart
murmur was noticed, which prompted further tests. An
echocardiogram showed a bicuspid aortic valve, with
mild stenosis of the aortic root.

At the age of 9, he attended the fifth year of primary
school due to speech disorder and anxiety. Neuropsychi-
atric assessment revealed anxiety, normal non verbal
cognitive function, specific language impairment and
fine motor skills disturbances, requiring weekly psycho-
motricity sessions. His growth parameters were as fol-
lows: weight was 39.3 kg (75th centile), height 147.2 cm
(97th centile), body mass index (BMI) was 18.13 kg/mZ.
At the age of 10, the boy weighted 48 kg (>97th centile),
height was 154 c¢cm (>97th centile), head circumference
was 58 cm (>97th centile) and BMI was 20.6. Pubic hair
appearance, growth spurt and weight gain were noted.
The boy was hospitalized, and further tests were per-
formed, confirming precocious puberty of central origin:
a radiograph of the hand and wrist, which showed ad-
vanced bone age (bone age of 13 years, biological age
9 years and 5 months); renal echography, adrenal glands
and tests, which were normal, and the LHRH test,
which showed an LH response. The boy started agon-
ist LHRH therapy. Brain magnetic resonance imaging
(MRI) showed increased cerebrospinal fluid (CSF)
spaces posteriorly to the cerebellum and a moderate
focal increase of CSF in the anterior temporal horns
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and in the lamina of the quadrigeminal cistern. The
pituitary gland was normal.

Chromosome analysis by array-CGH (a-CGH) revealed
a 5.2-Mb deletion on chromosome 1p21.3p21.1
(chromosome 1:98,456,293-103,682,084 — hgl9). a-CGH
was performed using a Cytochip ISCA 180 K Oligo plat-
form (BlueGnome Ltd.). a-CGH analysis of the parents
revealed the de novo origin of the deletion.

Conclusions
Deletions at 1p21.3 have been recognized as a cause of
childhood obesity syndrome. Twelve patients carrying
1p21.3 deletions have been described in the literature to
date [3-6], presenting with mild to moderate ID
(100 %), obesity or a tendency to obesity, with a weight
3 or more standard deviations above the mean (92 %),
ASD (92 %) and mild dysmorphic features (67 %) (Fig. 1
and Table 1). The minimal overlapping region was re-
stricted to a chromosomal segment of 1.22 Mb, which
includes the DPYD and MIR137 genes. DPYD was pro-
posed as the gene contributing to the phenotype [3, 5],
based on the assumption that its haploinsufficiency
would contribute to the development of a neuropsychi-
atric phenotype, which also leads to obesity. However,
the case herein presented and the patient recently re-
ported by Pinto et al. [6] carried a deletion overlapping
in the critical region only at the MIR137, which suggests
that this is the gene underlying the phenotype of
patients carrying deletions at 1p21.3.

miRNAs are noncoding 21-23 nucleotide small RNAs
that are highly conserved and involved in several bio-
logical processes, such as cell proliferation, apoptosis,
cell differentiation and morphogenesis [8]. They regulate
posttranscriptional processes via sequence-specific inter-
actions with the untranslated regions (UTRs) of cognate
messenger RNA targets [7, 9]. Each individual miRNA
can regulate many mRNAs, and conversely, each mRNA
can be targeted by a number of miRNAs. The involvement
of miR-137 in obesity, ID and ASD could be explained at
two different levels. First, miR-137 regulates a multitude
of genes in the central nervous system (CNS) [10]. Specif-
ically, miR-137 has been shown to be involved in
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Fig. 1 Chromosome 1p21.3 microdeletions described to date. Minimal region of overlap highlighted by the dashed orange lines. The figure was
drawn according to the UCSC Genome Browser on Human Feb. 2009 (GRCh37/hg19) assembly
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Table 1 Clinical features of patients carrying overlapping 1p21.3 deletions

Carter pt 1 Carter pt 2, pt 3 Willemsen pt 1, Willemsen — Willemsen pt  D'’Angelo pt 1 D'Angelo pt 2 Pinto pt Our case
pt2, pt 3 pt 4 5 8658_201
Chromosome Position  97,559,579- 96,969,562-98,471,225 97,727,412- 97,547412—- 96497412- 93919217~ 95,696,444~ 98,403,034- 98,456,293~
on chr 1 (hg19) 98,652,079 99,477,412 98957412 98,947,412 99,846,176 107,755,879 101,151,364 103,682,084
Age 13 years 9 7 years, 5 years 42 years, 38 years, 33 years 18 years 15 years 8 years 8 months NA 10 years
months NA
Gender M M, F M, M, F M F F F F
Intellectual disability Severe language Severe language delay Borderline, Mild- Mild Moderate Language Severe language Severe language Mild
delay moderate delay delay delay
Autism spectrum + + + + + NA + + +
disorder
Weight NA > > 97" centile 50th 90" >98™ centile 98" centile  >98" centile  >95™ centile  >95™ centile Overweight Overweight
centile,
Dysmorphic features NA + + + + + - NA -
Ocular problems NA NA Myopia, Myopia, / Myopia / NA Hypermetropy
astigmatism astigmatism
Precocious puberty NA NA - - - - + NA +
Others / Small joint hypermobility, / / / / / High pain Bicuspic aortic
macrocephaly intolerance valve

08:6 (9107) $212Uab603A) ID[NIBJOYY b 13 199N ]
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modulating neurogenesis, with a dose-dependent effect
[11]. Moreover, the miR137 targets Ezh2, a H3-K27 meth-
yltransferase involved in the regulation of neuroprogenitor
cell maintenance and differentiation [12]. Notably, muta-
tions in the EZH2 gene cause Weaver syndrome, another
syndromic overgrowth disorder characterized by ID,
dysmorphic features and obesity [13]. Although the role of
neuronal noncoding RNAs in the energy control of the
body is not fully understood, recently, the hypothalamic
miR-103 has been shown to protect against hyperphagic
obesity in mice [14]. Therefore, the role of miR-137 in the
control of food intake or energy accumulation and
expenditure in the CNS can be speculated.

At a peripheral level, recent studies have shown
that miRNAs are dysregulated in obese adipose tissue
[15]. Furthermore, during adipogenesis, miRNAs regu-
late fat cell development by accelerating or inhibiting
adipocyte differentiation. In addition, miRNAs may
regulate the commitment to the adipogenic lineage in
multipotent stem cells and therefore govern the numbers
of fat cells [16].

Ninety-two percent of the cases carrying 1p21.3 dele-
tion present with ASD. miR-137 is a brain expressed
miRNA [17, 18] that regulates several protein coding
genes that are important for brain function, and involved
in the pathogenesis of neuropsychiatric disorders includ-
ing schizophrenia [17, 19]. Functional studies indicate
that miR-137 is involved in controlling neuronal differ-
entiation and maturation [20, 21] as well as synapse de-
velopment [22], all of which have been implicated on the
pathogenesis of autism [20, 23]. Of note, lymphoblastoid
cell lines from patients carrying 1p21.3 deletion involv-
ing the miR-137 gene have reduced levels of miR-137
[4]. miR-137 is highly expressed in the hippocampus, oc-
cipital cortex, and frontal cortex in human post-mortem
tissue, as well as in the synaptosomal fractions in mouse
brain preparations, providing further evidence that
miR-137 plays a role in synapse formation during
brain development [4].

Several studies have implicated miRNA in autism. A
number of miRNAs have shown differing expression
levels in samples from autistic individuals compared to
matched controls [24, 25], suggesting that dysregulation
of miRNAs could be related to autism. Furthermore,
miR-137 has been recently implicated in ASD via a
genome-wide meta-analysis that considered single
nucleotide polymorphism data across five psychiatric
disorders (ASD, attention deficit-hyperactivity disorder,
bipolar disorder, major depressive disorder, and schizo-
phrenia), and found an association between mir-137 and
both schizophrenia and ASD [26].

Lastly, Devanna and Vernes provided support for
miR-137 as an autism candidate by showing that the
RORa gene, a novel autism candidate gene, is regulated
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directly by miR-137 through targeting its 3 UTR in a
site-specific manner [27].

It is therefore likely that the core clinical features of
obesity and ASD in patients carrying 1p21.3 deletion are
both mediated by miR-137.

The case herein described presents with clinical features
not previously described in the 1p21.3 microdeletion syn-
drome, such as precocious puberty and bicuspid aortic
valve, with mild stenosis of the aortic root. The boy carries
a 1p21.3 deletion, which extends 5 Mb proximally to the
SRO and includes a number of genes. PALMD and S1PRI
encode for proteins that are expressed during normal em-
bryonic heart development and morphogenesis. Specific-
ally, PALMD has been associated with aortic root size [28],
while S1PR1 has an important role in the regulation of
sprouting angiogenesis and vascular maturation. It inhibits
sprouting angiogenesis to prevent excessive sprouting
during blood vessel development [29]. With regard to pre-
cocious puberty, we found two DECIPHER patients that
carried deletions partially overlapping with our case and
precocious puberty: case 260349, which presented with
precocious puberty and specific learning disability and
carrying a deletion at chrl:97,000,749-99,813,665; case
254871 presented with ASD, ID, precocious puberty and
spotty hyperpigmentation, carrying the deletion at
chr1:97019762-102447536. The SRO among these micro-
deletions includes the SNX7, PLPPR4 and PLPPR5 genes.
Both PLPPR4 and PLPPR5 encode for a lipid phosphate
phosphatase enzyme specifically expressed in neurons and
located in the membranes of outgrowing axons, important
for axonal outgrowth during development and regenerative
sprouting [30, 31].

In summary, with this study, we present a case carry-
ing a novel 1p31.3 microdeletion, and we propose that
the miRNA miR137 is the mediator of the obesity, ASD
and ID phenotype. Further studies are warranted to
elucidate the molecular mechanisms by which miR-137
mediates the phenotype, both in the CNS and the adi-
pose tissue.
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