22 research outputs found

    JAK2 V617F prevalence in Brazilian patients with polycythemia vera, idiopathic myelofibrosis and essential thrombocythemia

    Get PDF
    Polycythemia vera (PV), essential thrombocythemia (ET) and idiopathic myelofibrosis (IMF) are myeloproliferative disorders (MPD) that arise from the clonal proliferation of a pluripotent hematopoietic progenitor, leading to the overproduction of one or more myeloid lineages. Recently, a specific mutation in the JAK2 gene, which encodes a tyrosine kinase, has been shown to be associated with the myeloproliferative phenotype observed in PV, ET and IMF. In this study of Brazilian patients, the JAK2 V617F mutation [c.1887G > T) was detected in four out of 49 patients with PV (96%), 14 out of 25 patients with IMF (56%), and in eight out of 29 patients with ET, which is in accordance with previous screenings of this mutation in other populations.336338Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Arhgap21 Modulates Fak Activity And Impairs Glioblastoma Cell Migration.

    No full text
    Glioblastoma multiforme is highly aggressive and is the most common glial tumor type. Although there have been advances in treatment, the average survival expectancy is 12-15 months. Several genes have been shown to influence glioblastoma progression. In the present work, we demonstrate that the RhoGTPase Activating Protein 21 (ARHGAP21) is expressed in the nuclear and perinuclear regions of several cell lines. In T98G and U138MG, glioblastoma derived cell lines, ARHGAP21 interacts with the C-terminal region of Focal Adhesion Kinase (FAK). ARHGAP21 depletion by shRNAi in T98G cells alters cellular morphology and increases: FAK phosphorylation states and activation of downstream signaling; the activity state of Cdc42; the production of metalloproteinase 2 (MMP-2) and cell migration rates. These modifications were found to be mainly due to the loss of ARHGAP21 action on FAK and, consequently, the activation of downstream effectors. These results suggest not only that ARHGAP21 might act as a tumor suppressor gene, but also indicate that ARHGAP21 might be a master regulator of migration having a crucial role in controlling the progression of different tumor types.1793806-1

    Ifn-β, Ifn-γ, And Tnf-α Decrease Erythrophagocytosis By Human Monocytes Independent Of Sirp-α Or Shp-1 Expression.

    No full text
    Many cases of autoimmune hemolytic anemia have been reported after viral infection. Phagocyte activation and accompanying erythrophagocytosis are thought to result from proinflammatory cytokines released during viral infection. SIRP-α (signal regulatory protein-α), a receptor expressed on phagocytes, inhibits phagocytosis when bound to CD47 on the erythrocyte membrane. Ligation with CD47 results in SHP-1 recruitment to SIRP-α and dephosphorylation of specific downstream substrates involved in phagocytosis. SIRP-α ligation by CD47 may be inhibited by proinflammatory cytokines. The aim of this work was to evaluate the effect of IFN-β, IFN-γ, and TNF-α on erythrophagocytosis and assess the effect on expression of SIRP-α and SHP-1 in human monocytes. Monocytes were cultured ex vivo with IFN-β or IFN-γ/TNF-α. Erythrophagocytosis was determined by flow cytometry. SIRP-α and SHP-1 gene expression was determined by real time-PCR, while SIRP-α and SHP-1 protein expression was determined by western blot. Erythrophagocytosis by monocytes significantly decreased after treatment with either IFN-β or IFN-γ/TNF-α. Monocytes cultured with IFN-γ/TNF-α showed increased SIRP-α gene and protein expression and SHP-1 gene expression. Monocytes cultured with IFN-β did not show any alteration in SIRP-α or SHP-1 expression. We conclude that IFN-β and IFN-γ/TNF-α decrease erythrophagocytosis by human monocytes in vitro, and this effect does not apparently require an increase in SIRP-α or SHP-1 expression.341054-

    Beta-thalassemia Intermedia In A Brazilian Patient With-101 (c > T) And Codon 39 (c > T) Mutations.

    No full text
    We verified molecular alterations in a 72-year-old Brazilian male patient with a clinical course of homozygous beta-thalassemia intermedia, who had undergone splenectomy and was surviving without regular blood transfusions. The blood cell count revealed microcytic and hypochromic anemia (hemoglobin = 6.5 g/dl, mean cell volume = 74 fl, mean cell hemoglobin = 24 pg) and hemoglobin electrophoresis showed fetal hemoglobin = 1.3%, hemoglobin A2 = 6.78% and hemoglobin A = 79.4%. To identify mutations in a patient with the symptoms of beta-thalassemia intermedia. Molecular inquiry into the mutations possibly responsible for the clinical picture described. The structural molecular biology and genetic engineering center of the Universidade Estadual de Campinas, Campinas, Brazil. DNA extraction was performed on the patient's blood samples. The polymerase chain reaction (PCR) was done using five specific primers that amplified exons and the promoter region of the beta globin gene. The samples were sequenced and then analyzed via computer programs. Two mutations that cause the disease were found: -101 (C > T) and codon 39 (C > T). This case represents the first description of -101 (C > T) mutation in a Brazilian population and it is associated with a benign clinical course.12128-3
    corecore