8 research outputs found
Conexi贸n de la ruta de proteinquinasa C con la respuesta a estr茅s genot贸xico
El mantenimiento de la integridad gen贸mica es un aspecto crucial para la supervivencia celular. El checkpoint de integridad del DNA es el mecanismo de vigilancia encargado de detectar la presencia de da帽o en el DNA y poner en marcha una respuesta celular para mantener la estabilidad gen贸mica. Los componentes centrales del checkpoint son las quinasas sensoras ATM y ATR (Tel1 y Mec1 en S. cerevisiae) y CHK1 Y CHK2 (Chk1 y Rad53 en levadura). La correcta activaci贸n del checkpoint depende de la actividad de prote铆na quinasa C (PKC), tanto en c茅lulas de levadura como de mam铆feros. En este trabajo se ha profundizado en la relaci贸n entre PKC y la maquinaria del checkpoint de integridad del DNA, as铆 como en la regulaci贸n de la propia PKC en condiciones de estr茅s genot贸xico. Se han caracterizado los determinantes estructurales de Pkc1 de levadura y las isoformas de mam铆feros PKC未 y PKC胃 que les permiten llevar a cabo su funci贸n en la activaci贸n de la respuesta a da帽o en el DNA. Asimismo, se ha visto que existe una regulaci贸n espacial de Pkc1, PKC未 y PKC胃 en respuesta a estr茅s genot贸xico y que se produce una acumulaci贸n nuclear tras la inducci贸n de da帽o en el DNA. Por otra parte, se ha abordado la identificaci贸n de mediadores de PKC en su funci贸n en la activaci贸n del checkpoint de integridad del DNA, concluyendo que en ausencia de Pkc1 se produce una ineficiente activaci贸n de Mec1 que afectar铆a a la activaci贸n de Rad53, comprometiendo la respuesta mediada por el checkpoint de integridad del DNA.The maintenance of genomic integrity is a crucial aspect for cell survival. The DNA integrity checkpoint is the surveillance mechanism responsible for detecting the presence of DNA damage and launching a cellular response to maintain genomic stability. The central components of the checkpoint are the ATM and ATR sensor kinases (Tel1 and Mec1 in S. cerevisiae) and CHK1 and CHK2 (Chk1 and Rad53 in yeast). The correct activation of the checkpoint depends on the activity of protein kinase C (PKC), both in yeast and mammalian cells. In this work, the relationship between PKC and the DNA integrity checkpoint machinery has been deepened, as well as the regulation of PKC itself in conditions of genotoxic stress. The structural determinants of yeast Pkc1 and the mammalian PKC未 and PKC胃 isoforms that allow them to carry out their function in the activation of the response to DNA damage have been characterized. Likewise, it has been seen that there is a spatial regulation of Pkc1, PKC未 and PKC胃 in response to genotoxic stress and that a nuclear accumulation occurs after the induction of DNA damage. On the other hand, the identification of PKC mediators in their function in the activation of the DNA integrity checkpoint has been addressed, concluding that in the absence of Pkc1 there is an inefficient activation of Mec1 that would affect the activation of Rad53, compromising the response mediated by the DNA integrity checkpoint
Chimeric proteins tagged with specific 3xHA cassettes may present instability and functional problems.
Epitope-tagging of proteins has become a widespread technique for the analysis of protein function, protein interactions and protein localization among others. Tagging of genes by chromosomal integration of PCR amplified cassettes is a widely used and fast method to label proteins in vivo. Different systems have been developed during years in the yeast Saccharomyces cerevisiae. In the present study, we analysed systematically a set of yeast proteins that were fused to different tags. Analysis of the tagged proteins revealed an unexpected general effect on protein level when some specific tagging module was used. This was due in all cases to a destabilization of the proteins and caused a reduced protein activity in the cell that was only apparent in particular conditions. Therefore, an extremely cautious approach is required when using this strategy
Analysis of the cellular content of proteins labelled with different tags.
<p>Cells of the wild-type (W303-1a), <i>DDC1-3xHA</i> (JCY1701), <i>DDC1-6xHA</i> (JCY1825), <i>DDC1-GFP</i> (JCY1661), <i>DDC1-myc</i> (JCY1887), <i>CLN2-3xHA</i> (JCY1357), <i>CLN2-6XHA</i> (JCY1830), <i>CLN2-GFP</i> (JCY1888), <i>CLN2-myc</i> (JCY1890), <i>PKC1-3xHA</i> (JCY2033), <i>PKC1-6XHA</i> (1891), <i>PKC1-GFP</i> (JCY1511), <i>PKC1-myc</i> (JCY1916), <i>RAD53-3xHA</i> (JCY1905), <i>RAD53-6XHA</i> (JCY1901), <i>RAD53-GFP</i> (JCY1903) and <i>RAD53-myc</i> (JCY1907) strains were grown in YPD. Protein level was determined by western blot using anti-Ddc1, anti-Cln2, anti-Pkc1 and anti-Rad53 antibodies. Cdc28 recognized by the anti-PSTAIRE antibody is shown as a loading control.</p
Analysis of the effect of the spacer sequence in 3xHA-tagging modules.
<p>(A) Schematic representation of Ddc1-3xHA, Ddc1-GFP and Ddc1-myc including the spacer sequence between the Ddc1 protein and the tag. (B) Cells of the wild-type (W303-1a), <i>DDC1-3xHA</i> (JCY1701) and <i>DDC1-3xHA</i><sup><i>螖IF</i></sup> (JCY2063) strains were grown in YPD. Ddc1 protein level in cell extracts was determined by western blot using a specific anti-Ddc1 antibody. The ponceau staining of the membrane is shown as a loading control. (C) Exponentially growing cultures of the wild-type (W303-1a), <i>DDC1-3xHA</i> (JCY1701) and <i>DDC1-3xHA</i><sup><i>螖IF</i></sup> (JCY2063) strains were incubated in the presence of 100 渭g/mL cycloheximide. Ddc1 protein level was analysed at the indicated time after the addition of cycloheximide by western blot using an anti-Ddc1 antibody. Cdc28 recognized by the anti-PSTAIRE antibody is shown as a loading control. (D) 10-fold serial dilutions from exponentially growing cultures of wild-type (W303-1a), <i>DDC1-3xHA</i> (JCY1701) and <i>DDC1-3xHA</i><sup><i>螖IF</i></sup> (JCY2063) strains were spotted onto YPD medium and exposed to UV radiation (40 J/m<sup>2</sup>). Plates were incubated at 25掳 for 4 days. (E) Whi7 was tagged with 3xHA using either the transforming modules described in Longtine <i>et al</i>. (JCY1544, lane 1) or an alternative cassette (JCY1728, lane 2). Whi7 protein level in cell extracts was determined by western blot using an anti-HA antibody. Note that Whi7 migrates in SDS-PAGE as multiple bands, which correspond to distinct phosphorylated states. The ponceau staining of the membrane is shown as a loading control.</p
Analysis of the cellular content of different 3xHA tagged proteins.
<p>Cells of the wild-type (W303-1a), <i>DDC1-3xHA</i> (JCY1701), <i>CLN2-3xHA</i> (JCY1357), <i>PKC1-3xHA</i> (JCY2033), <i>SLT2-3xHA</i> (JCY411), <i>RAD53-3xHA</i> (JCY1905) and <i>SWI5-3xHA</i> (JCY487) strains were grown in YPD. Ddc1, Cln2, Pkc1, Slt2, Rad53 and Swi5 protein level in cell extracts was determined by western blot using specific anti-Ddc1, anti-Cln2, anti-Pkc1, anti-Slt2, anti-Rad53, anti-Swi5 or anti-HA antibodies. The ponceau staining of the membrane is shown as a loading control.</p
Analysis of the stability of proteins labelled with different tags.
<p>(A) Exponentially growing cultures of the wild-type (W303-1a), <i>DDC1-3xHA</i> (JCY1701), <i>DDC1-6xHA</i> (JCY1825), <i>DDC1-GFP</i> (JCY1661) and <i>DDC1-myc</i> (JCY1887) strains were incubated in the presence of 100 渭g/mL cycloheximide. Ddc1 protein level was analysed at the indicated times after the addition of cycloheximide by western blot. Cdc28 recognized by the anti-PSTAIRE antibody is shown as a loading control. (B) Cln2 protein stability was analysed in wild-type (W303-1a), <i>CLN2-3xHA</i> (JCY1357), <i>CLN2-6XHA</i> (JCY1830), <i>CLN2-GFP</i> (JCY1888) and <i>CLN2-myc</i> (JCY1890) cells as described in A. (C) Pkc1 protein stability was analysed in wild-type (W303-1a), <i>PKC1-3xHA</i> (JCY2033), <i>PKC1-6XHA</i> (1891), <i>PKC1-GFP</i> (JCY1511) and <i>PKC1-myc</i> (JCY1916) cells as described in A. (D) Rad53 protein stability was analysed in wild-type (W303-1a), <i>RAD53-3xHA</i> (JCY1905), <i>RAD53-6XHA</i> (JCY1901), <i>RAD53-GFP</i> (JCY1903) and <i>RAD53-myc</i> (JCY1907) as described in A. Protein level was determined by western blot using anti-Ddc1, anti-Cln2, anti-Pkc1, anti-Rad53, anti-HA, anti-GFP or anti-myc antibodies as indicated. Cdc28 recognized by the anti-PSTAIRE antibody is shown as a loading control.</p