1,038 research outputs found

    Chester supersolid of spatially indirect excitons in double-layer semiconductor heterostructures

    Full text link
    A supersolid, a counter-intuitive quantum state in which a rigid lattice of particles flows without resistance, has to date not been unambiguously realised. Here we reveal a supersolid ground state of excitons in a double-layer semiconductor heterostructure over a wide range of layer separations outside the focus of recent experiments. This supersolid conforms to the original Chester supersolid with one exciton per supersolid site, as distinct from the alternative version reported in cold-atom systems of a periodic modulation of the superfluid density. We provide the phase diagram augmented by the supersolid. This new phase appears at layer separations much smaller than the predicted exciton normal solid, and it persists up to a solid--solid transition where the quantum phase coherence collapses. The ranges of layer separations and exciton densities in our phase diagram are well within reach of the current experimental capabilities

    Feeding dynamics of Northwest Atlantic small pelagic fishes

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Progress in Oceanography 165 (2018): 52-62, doi:10.1016/j.pocean.2018.04.014.Small pelagic fishes represent a critical link between zooplankton and large predators. Yet, the taxonomic resolution of the diets of these important fishes is often limited, especially in the Northwest Atlantic. We examined the diets, along with stable isotope signatures, of five dominant small pelagic species of the Northeast US continental shelf ecosystem (Atlantic mackerel Scomber scombrus, Atlantic herring Clupea harengus, alewife Alosa pseudoharengus, blueback herring Alosa aestivalis, and Atlantic butterfish Peprilus triacanthus). Diet analyses revealed strong seasonal differences in most species. Small pelagic fishes predominantly consumed Calanus copepods, small copepod genera (Pseudocalanus/Paracalanus/Clausocalanus), and Centropages copepods in the spring, with appendicularians also important by number for most species. Krill, primarily Meganyctiphanes norvegica, and hyperiid amphipods of the genera Hyperia and Parathemisto were common in the stomach contents of four of the five species in the fall, with hyperiids common in the stomach contents of butterfish in both seasons and krill common in the stomach contents of alewife in both seasons. Depth and region were also found to be sources of variability in the diets of Atlantic mackerel, Atlantic herring, and alewife (region but not depth) with krill being more often in the diet of alewife in more northerly locations, primarily the Gulf of Maine. Stable isotope data corroborate the seasonal differences in diet but overlap of isotopic niche space contrasts that of dietary overlap, highlighting the differences in the two methods. Overall, the seasonal variability and consumer-specific diets of small pelagic fishes are important for understanding how changes in the zooplankton community could influence higher trophic levels.Funding for this work was primarily through a US National Science Foundation (NSF) OCE-RIG grant (OCE 1325451) to JKL, with additional support from NOAA through the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158 in the form a CINAR Fellow Award (JKL), an NSF Long-term Ecological Research grant for the Northeast US Shelf Ecosystem (OCE 1655686; JKL), a Hendrix College summer research award (ZRK), and an NSF REU-supported Woods Hole Oceanographic Institution Summer Student Fellowship (SLH)

    IL-4 sensitivity shapes the peripheral CD8\u3csup\u3e+\u3c/sup\u3e T cell pool and response to infection

    Get PDF
    Previous studies have revealed that a population of innate memory CD8+ T cells is generated in response to IL-4, first appearing in the thymus and bearing high expression levels of Eomesodermin (Eomes) but not T-bet. However, the antigen specificity and functional properties of these cells is poorly defined. In this study, we show that IL-4 regulates not only the frequency and function of innate memory CD8+ T cells, but also regulates Eomes expression levels and functional reactivity of naive CD8+ T cells. Lack of IL-4 responsiveness attenuates the capacity of CD8+ T cells to mount a robust response to lymphocytic choriomeningitis virus infection, with both quantitative and qualitative effects on effector and memory antigen-specific CD8+ T cells. Unexpectedly, we found that, although numerically rare, memory phenotype CD8+ T cells in IL-4Rα–deficient mice exhibited enhanced reactivity after in vitro and in vivo stimulation. Importantly, our data revealed that these effects of IL-4 exposure occur before, not during, infection. Together, these data show that IL-4 influences the entire peripheral CD8+ T cell pool, influencing expression of T-box transcription factors, functional reactivity, and the capacity to respond to infection. These findings indicate that IL-4, a canonical Th2 cell cytokine, can sometimes promote rather than impair Th1 cell–type immune responses

    Experimental conditions for observation of electron-hole superfluidity in GaAs heterostructures

    Full text link
    The experimental parameter ranges needed to generate superfluidity in optical and drag experiments in GaAs double quantum wells are determined, using a formalism that includes self-consistent screening of the Coulomb pairing interaction in the presence of the superfluid. The very different electron and hole masses in GaAs make this a particularly interesting system for superfluidity, with exotic superfluid phases predicted in the BCS-BEC crossover regime. We find that the density and temperature ranges for superfluidity cover the range for which optical experiments have observed indications of superfluidity, but that existing drag experiments lie outside the superfluid range. However we also show that for samples with low mobility with no macroscopically connected superfluidity, if the superfluidity survived in randomly distributed localized pockets, standard quantum capacitance measurements could detect these pockets.Comment: 7 pages, 4 figure

    Gas-permeable ethylene bags for the small scale cultivation of highly pathogenic avian influenza H5N1 and other viruses in embryonated chicken eggs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Embryonated chicken eggs (ECE) are sometimes used for the primary isolation or passage of influenza viruses, other viruses, and certain bacteria. For small-scale experiments with pathogens that must be studied in biosafety level three (BSL3) facilities, inoculated ECE are sometimes manipulated and maintained in small egg incubators within a biosafety cabinet (BSC). To simplify the clean up and decontamination of an egg incubator in case of egg breakage, we explored whether ethylene breather bags could be used to encase ECE inoculated with pathogens. This concept was tested by determining embryo survival and examining virus yields in bagged ECE.</p> <p>Results</p> <p>Virus yields acceptable for many applications were attained when influenza-, alpha-, flavi-, canine distemper-, and mousepox viruses were propagated in ECE sealed within ethylene breather bags.</p> <p>Conclusions</p> <p>For many small-scale applications, ethylene breather bags can be used to encase ECE inoculated with various viruses.</p

    Rhamm-/- mice are defective in skin wound repair due to aberrantERK1,2 signaling in fibroblast migration

    Get PDF
    Rhamm (receptor for hyaluronan-mediated motility) is an hyaluronan binding protein with limited expression in normal tissues and high expression in advanced cancers. To understand its physiological functions and identify the molecular mechanisms underlying these functions, we created mice with a genetic deletion of Rhamm. We show that Rhamm(−/−) fibroblasts fail to resurface scratch wounds >3 mm or invade hyaluronan-supplemented collagen gels in culture. We identify a requirement for Rhamm in the localization of CD44 to the cell surface, formation of CD44–ERK1,2 (extracellular-regulated kinase 1,2) complexes, and activation/subcellular targeting of ERK1,2 to the cell nucleus. We also show that cell surface Rhamm, restricted to the extracellular compartment by linking recombinant protein to beads, and expression of mutant active mitogen-activated kinase kinase 1 (Mek1) are sufficient to rescue aberrant signaling through CD44–ERK1,2 complexes in Rh(−/−) fibroblasts. ERK1,2 activation and fibroblast migration/differentiation is also defective during repair of Rh(−/−) excisional skin wounds and results in aberrant granulation tissue in vivo. These results identify Rhamm as an essential regulator of CD44–ERK1,2 fibroblast motogenic signaling required for wound repair
    • 

    corecore