7 research outputs found

    Intrasynovial flexor tendon injuries and repair

    No full text
    Complications after surgical repair of intrasynovial flexor tendon injuries in the hand occur despite advanced suture techniques and structured postoperative rehabilitation regimens. Early controlled tendon mobilization prevents adhesion formations and improves tendon healing as well as digit range of motion. To allow early postoperative rehabilitation, the strength of the repair must withstand forces created during the rehabilitation maneuvers. Improvements in suture biomechanics have increased repair strength, but up to 18 percent of repaired tendons still rupture. The overarching aim of this thesis was to investigate how to best treat intrasynovial flexor tendon injuries with limited risk of repair rupture, decreased adhesion formations, and to estimate the effect of individual patient and injury characteristics on functional outcome. In two observational studies, we identified risk factors for rupture of repaired intrasynovial flexor digitorum profundus (FDP) tendons, and studied effects of these risk factors on the long-term outcome. Age was associated with increased risk of repair rupture and impaired digital mobility the first year after surgical repair. Concomitant flexor digitorum superficialis (FDS) transection was associated with increased risk of repair rupture without affecting digital mobility. Concomitant nerve transection lowered the rupture risk without affecting digital mobility. To better understand forces generated in the flexor tendons during rehabilitation maneuvers, we measured in vivo forces in the index finger FDP and FDS tendons during rehabilitation exercises. Highest forces were measured during isolated FDP and FDS flexion for the FDP and FDS respectively. For the FDS tendon, higher forces were observed with the wrist at 30° flexion compared to neutral position, and for the FDP tendon, forces were higher during active finger flexion compared to place and hold. PXL01 is a lactoferrin peptide with anti-adhesive effects previously demonstrated in animal studies and a clinical trial to improve digital mobility when administrated around repaired tendons. We studied the mechanism of action of its corresponding rabbit peptide, rabPXL01 in sodium hyaluronate (HA) in a rabbit model of flexor tendon transection and repair and used RT-qPCR to assess mRNA levels for different genes. Increased levels of PRG4 (encoding lubricin) were observed in rabPXL01 in HA treated tendons. The expression of Interleukin 1β, 6, and 8 was repressed in tendon sheaths. RabPXL01 in HA might stimulate the release of lubricin and diminish inflammation, which correspondingly reduces tendon-gliding resistance and adhesion formations during postoperative rehabilitation exercises. The results of this thesis suggest individually adapted treatment plans, depending on repair strength, patient and injury characteristics, as a possible way to improve outcome after flexor tendon repair

    PXL01 in sodium hyaluronate results in increased PRG4 expression: a potential mechanism for anti-adhesion

    No full text
    Purpose: To investigate the anti-adhesive mechanisms of PXL01 in sodium hyaluronate (HA) by using the rabbit lactoferrin peptide, rabPXL01 in HA, in a rabbit model of healing tendons and tendon sheaths. The mechanism of action for PXL01 in HA is interesting since a recent clinical study of the human lactoferrin peptide PXL01 in HA administered around repaired tendons in the hand showed improved digit mobility. Materials and methods: On days 1, 3, and 6 after tendon injury and surgical repair, reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) was used to assess mRNA expression levels for genes encoding the mucinous glycoprotein PRG4 (also called lubricin) and a subset of matrix proteins, cytokines, and growth factors involved in flexor tendon repair. RabPXL01 in HA was administered locally around the repaired tendons, and mRNA expression was compared with untreated repaired tendons and tendon sheaths. Results: We observed, at all time points, increased expression of PRG4 mRNA in tendons treated with rabPXL01 in HA, but not in tendon sheaths. In addition, treatment with rabPXL01 in HA led to repression of the mRNA levels for the pro-inflammatory mediators interleukin (IL)-1β, IL-6, and IL-8 in tendon sheaths. Conclusions: RabPXL01 in HA increased lubricin mRNA production while diminishing mRNA levels of inflammatory mediators, which in turn reduced the gliding resistance and inhibited the adhesion formation after flexor tendon repair

    IL-23R deficiency does not impact atherosclerotic plaque development in mice

    No full text
    Background--Interleukin-23 (IL-23) has been implicated in inflammatory and autoimmune diseases by skewing CD4+ T helper cells towards a pathogenic Th17 phenotype. In this study we investigated the presence of IL-23 receptor (IL-23R)-expressing cells in the atherosclerotic aorta and evaluated the effect of IL-23R deficiency on atherosclerosis development in mice. Methods and Results--We used heterozygous Ldlr-/-Il23reGFP/WT knock-in mice to identify IL-23R-expressing cells by flow cytometry and homozygous Ldlr-/-Il23reGFP/eGFP (Ldlr-/- Il23r-/-) mice to investigate the effect of lack of IL-23R in atherosclerosis. We demonstrate the presence of relatively rare IL-23R-expressing cells in lymphoid tissue and aorta (≈0.1-1% IL23R+ cells of all CD45+ leukocytes). After 10 weeks on a high-fat diet, production of IL-17, but not interferon-c, by CD4+ T cells and other lymphocytes was reduced in Ldlr-/- Il23r-/- compared with Ldlr-/-controls. However, Ldlr-/- and Ldlr-/-Il23r-/- mice had equivalent amounts of aortic sinus and descending aorta lesions. Adoptive transfer of IL-23R-deficient CD4+ T cells to lymphopenic Ldlr-/-Rag1-/- resulted in dramatically reduced IL-17-producing T cells but did not reduce atherosclerosis, compared with transfer of IL-23R-sufficient CD4+ T cells. Conclusions--These data demonstrate that loss of IL-23R does not affect development of experimental atherosclerosis in LDLrdeficient mice, despite a role for IL-23 in differentiation of IL-17-producing T cells

    High Plasma Levels of Heparin-Binding Epidermal Growth Factor Are Associated With a More Stable Plaque Phenotype and Reduced Incidence of Coronary Events.

    No full text
    Rupture of atherosclerotic plaques is the major cause of acute coronary events (CEs). Plaque destabilization is the consequence of an imbalance between inflammatory-driven degradation of fibrous tissue and smooth muscle cell-dependent tissue repair. Proinflammatory factors have been documented extensively as biomarkers of cardiovascular risk but factors that contribute to stabilization of atherosclerotic plaques have received less attention. The present study aimed to investigate whether plasma levels of the smooth muscle cell growth factor epidermal growth factor (EGF), heparin-binding-EGF (HB-EGF), and platelet-derived growth factor correlate with plaque phenotype and incidence of CEs

    Genetic Variations and Subclinical Markers of Carotid Atherosclerosis in Patients with Type 2 Diabetes Mellitus

    No full text
    corecore