35 research outputs found

    Oil

    Get PDF

    I am From

    Get PDF

    In-air and Underwater Hearing of Diving Birds

    Get PDF
    In-air and underwater auditory thresholds were measured in diving bird species, using behavioral and electrophysiological techniques. In the first set of experiments, the auditory brainstem response (ABR) was used to compare in-air auditory sensitivity across ten species of diving birds. The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of greatest sensitivity, from 1000 to 3000 Hz. The audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds were observed in the duck species, specifically the lesser scaup (Aythya affinis) and ruddy duck (Oxyura jamaicensis). In the second set of experiments, both the ABR and psychoacoustics were used to measure in-air auditory sensitivity in one species of diving duck, the lesser scaup. Both approaches yielded audiograms with similar U-shapes and regions of greatest sensitivity (2000-3000 Hz). However, ABR thresholds were higher than psychoacoustic thresholds at all frequencies. This difference was smallest at the highest frequency tested using both methods (5,700 Hz) and greatest at 1,000 Hz, where the ABR threshold was 26.8 dB higher than the behavioral measure of threshold. In the third set of experiments, psychoacoustic techniques were used to measure in-air and underwater sensitivity in one species of sea duck, the long-tailed duck (Clangula hyemalis). Underwater auditory thresholds were measured for the first time in any diving bird species. Long-tailed duck in-air sensitivity was greatest at 2000 Hz. The ducks responded reliably to sound stimuli underwater, and correctly responded to high intensity stimuli (greater than 117 dB re 1 μPa) with over 80% accuracy at frequencies between 0.5 kHz and 2.86 kHz. The large differences in diving behavior and physiology across bird orders suggest these studies should be extended to other diving bird species in order to understand how well birds hear underwater. These first measurements highlight the need for further investigation into underwater hearing in diving birds, in order to understand underwater hearing mechanisms and begin to develop hypotheses as to how the introduction of man-made noise sources into the aquatic environment may impact these species

    In-air hearing of a diving duck: A comparison of psychoacoustic and auditory brainstem response thresholds

    Get PDF
    Auditory sensitivity was measured in a species of diving duck that is not often kept in captivity, the lesser scaup. Behavioral (psychoacoustics) and electrophysiological [the auditory brainstem response (ABR)] methods were used to measure in-air auditory sensitivity, and the resulting audiograms were compared. Both approaches yielded audiograms with similar U-shapes and regions of greatest sensitivity (2000-3000 Hz). However, ABR thresholds were higher than psychoacoustic thresholds at all frequencies. This difference was least at the highest frequency tested using both methods (5700 Hz) and greatest at 1000 Hz, where the ABR threshold was 26.8 dB higher than the behavioral measure of threshold. This difference is commonly reported in studies involving many different species. These results highlight the usefulness of each method, depending on the testing conditions and availability of the animals

    Vocal Productions of Rhythms by the Bottlenose Dolphin (Tursiops Truncatus)

    No full text
    (Statement of Responsibility) by Sara E. Crowell(Thesis) Thesis (B.A.) -- New College of Florida, 2006(Electronic Access) RESTRICTED TO NCF STUDENTS, STAFF, FACULTY, AND ON-CAMPUS USE(Bibliography) Includes bibliographical references.(Source of Description) This bibliographic record is available under the Creative Commons CC0 public domain dedication. The New College of Florida, as creator of this bibliographic record, has waived all rights to it worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.(Local) Faculty Sponsor: Harley, Heid

    In-air hearing of a diving duck: A comparison of psychoacoustic and auditory brainstem response thresholds

    Get PDF
    Auditory sensitivity was measured in a species of diving duck that is not often kept in captivity, the lesser scaup. Behavioral (psychoacoustics) and electrophysiological [the auditory brainstem response (ABR)] methods were used to measure in-air auditory sensitivity, and the resulting audiograms were compared. Both approaches yielded audiograms with similar U-shapes and regions of greatest sensitivity (2000-3000 Hz). However, ABR thresholds were higher than psychoacoustic thresholds at all frequencies. This difference was least at the highest frequency tested using both methods (5700 Hz) and greatest at 1000 Hz, where the ABR threshold was 26.8 dB higher than the behavioral measure of threshold. This difference is commonly reported in studies involving many different species. These results highlight the usefulness of each method, depending on the testing conditions and availability of the animals

    In-air hearing of a diving duck: A comparison of psychoacoustic and auditory brainstem response thresholds

    Get PDF
    Auditory sensitivity was measured in a species of diving duck that is not often kept in captivity, the lesser scaup. Behavioral (psychoacoustics) and electrophysiological [the auditory brainstem response (ABR)] methods were used to measure in-air auditory sensitivity, and the resulting audiograms were compared. Both approaches yielded audiograms with similar U-shapes and regions of greatest sensitivity (2000-3000 Hz). However, ABR thresholds were higher than psychoacoustic thresholds at all frequencies. This difference was least at the highest frequency tested using both methods (5700 Hz) and greatest at 1000 Hz, where the ABR threshold was 26.8 dB higher than the behavioral measure of threshold. This difference is commonly reported in studies involving many different species. These results highlight the usefulness of each method, depending on the testing conditions and availability of the animals

    Website Development for Association Solidarité Féminine

    No full text
    The purpose of this project was to create a website for the - Association Solidarité Féminine organization (ASF) by understanding the mission, outreach, the client base, and the constituents. We accomplished our goal by examining the historical context of women in Morocco, NGO promotion strategies, and web design and maintenance for a targeted audience. Our research helped us to develop a functional website

    In-air hearing of a diving duck: A comparison of psychoacoustic and auditory brainstem response thresholds

    No full text
    Auditory sensitivity was measured in a species of diving duck that is not often kept in captivity, the lesser scaup. Behavioral (psychoacoustics) and electrophysiological [the auditory brainstem response (ABR)] methods were used to measure in-air auditory sensitivity, and the resulting audiograms were compared. Both approaches yielded audiograms with similar U-shapes and regions of greatest sensitivity (2000-3000 Hz). However, ABR thresholds were higher than psychoacoustic thresholds at all frequencies. This difference was least at the highest frequency tested using both methods (5700 Hz) and greatest at 1000 Hz, where the ABR threshold was 26.8 dB higher than the behavioral measure of threshold. This difference is commonly reported in studies involving many different species. These results highlight the usefulness of each method, depending on the testing conditions and availability of the animals
    corecore