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In-air and underwater auditory thresholds were measured in diving bird species, 

using behavioral and electrophysiological techniques.  In the first set of experiments, the 

auditory brainstem response (ABR) was used to compare in-air auditory sensitivity across 

ten species of diving birds.  The average audiogram obtained for each species followed 

the U-shape typical of birds and many other animals.  All species tested shared a common 

region of greatest sensitivity, from 1000 to 3000 Hz. The audiograms differed 

significantly across species. Thresholds of all duck species tested were more similar to 

each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) 

and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest 

thresholds were observed in the duck species, specifically the lesser scaup (Aythya 

affinis) and ruddy duck (Oxyura jamaicensis).   

 In the second set of experiments, both the ABR and psychoacoustics were used to 

measure in-air auditory sensitivity in one species of diving duck, the lesser scaup.  Both 

approaches yielded audiograms with similar U-shapes and regions of greatest sensitivity 



(2000-3000 Hz).  However, ABR thresholds were higher than psychoacoustic thresholds 

at all frequencies.  This difference was smallest at the highest frequency tested using both 

methods (5,700 Hz) and greatest at 1,000 Hz, where the ABR threshold was 26.8 dB 

higher than the behavioral measure of threshold. 

 In the third set of experiments, psychoacoustic techniques were used to measure 

in-air and underwater sensitivity in one species of sea duck, the long-tailed duck 

(Clangula hyemalis). Underwater auditory thresholds were measured for the first time in 

any diving bird species. Long-tailed duck in-air sensitivity was greatest at 2000 Hz. The 

ducks responded reliably to sound stimuli underwater, and correctly responded to high 

intensity stimuli (greater than 117 dB re 1 µPa) with over 80% accuracy at frequencies 

between 0.5 kHz and 2.86 kHz. The large differences in diving behavior and physiology 

across bird orders suggest these studies should be extended to other diving bird species in 

order to understand how well birds hear underwater.  These first measurements highlight 

the need for further investigation into underwater hearing in diving birds, in order to 

understand underwater hearing mechanisms and begin to develop hypotheses as to how 

the introduction of man-made noise sources into the aquatic environment may impact 

these species.   
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Chapter 1: Introduction 
 

Summary 
	
  

The aim of this dissertation was to explore the in-air and underwater auditory 

sensitivity of diving birds. Such birds often dive to significant depths, and may have 

adaptations to use sensory systems, beyond vision, to assist with foraging, navigating, 

and/or communicating in the water. In this study, I used electrophysiological methods 

to compare in-air auditory sensitivity across diving bird species, and psychoacoustic 

methods to compare in-air auditory sensitivity within a single species. This 

dissertation includes the first systematic measurements of underwater hearing in a 

bird.  

The Biological Challenge 
	
  
 While light, thermal, and other types of energy are significantly attenuated in 

water, sound travels approximately 4.5 times faster (1,500 m/s) than in air (344 m/s) 

(Urick, 1996). Because sound propagates so efficiently in water, many aquatic 

animals have evolved the use of sound for communication, navigation, and foraging 

while underwater. Just as terrestrial animals have adapted to compensate for the 

impedance mismatch between air and the fluid-filled inner ear, however, aquatic 

animals need impedance matching adaptations to detect sound in a medium that very 

closely matches their tissues. In addition, all aquatic vertebrates have to adapt to 

greatly increased pressures at depths underwater.  

Wholly aquatic animals such as cetaceans (dolphins and whales) and fishes 

have adaptations for hearing underwater, while amphibious animals (those that live 
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both on land and on water) such as the pinnipeds (seals and sea lions) or anurans 

(frogs) may have functional hearing both in air and underwater. Many of the 

mechanisms for hearing underwater are at least partly understood in pinnipeds and 

anurans, but almost nothing is known of how diving birds, another amphibious group, 

may be adapted to hearing underwater.  

Entirely Aquatic Hearing 

Cetaceans 

Structure 

 While the basic mammalian structure of the middle, and inner ear is preserved 

in the Cetacea, the path of sound to the inner ear has been greatly modified to adapt 

for the speed of sound and impedance of water (Au & Hastings, 2008). Cetaceans 

have no pinnae, which could not impact underwater hearing in the same way that they 

do in air.  In air, the function of the pinna is to collect sound, and perform spectral 

transformations to incoming sounds, which enables the process of vertical 

localization to take place (Middlebrooks & Green, 1991). In water, pinna function 

would be degraded, due to the much longer wavelengths of sound. A pinna would 

also interrupt cetaceans’ streamlined shape (Reidenberg, 2007).  

Odontocete cetaceans include sperm whales (Physeter macrocephalus), orcas 

(Orcinus orca), beaked whales (family Ziphiidae), and dolphins. Their auditory 

meatus is not air-filled, but instead filled with cellular debris and dense cerumen, 

while the tympanic membrane is largely atrophied (Ketten, 1997). The mysticete 

(baleen whales) meatus is also filled with wax and debris, but the canal ends at the 

tympanic membrane (Fraser & Purves, 1954. The cetacean middle and inner ear are 
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encased in the tympano-periotic complex (TPC), a dense, bony bulla that is connected 

to the skull by cartilage, connective tissues and fat (McCormick et al., 1970; Ketten, 

1997). While it appears that the auditory canal is unlikely to provide a direct pathway 

to the middle and inner ear, the pathway of sound through the cetacean head is still 

uncertain (Ketten, 1992). Norris (1967) suggested that sounds enter the odontocete 

head through the thinned posterior portion of the mandible (the pan bone), and are 

transmitted via a fat-filled canal to the tympanic bulla. This “acoustic fat” appears to 

have a very low sound absorption characteristic that is not found anywhere else in the 

animal’s body (Varanasi & Malins, 1971).  

Using evoked potentials from the midbrain of four dolphin species, Bullock et 

al. (1967) found the greatest sensitivity to sound when the sound source was placed 

on the lower jaw forward of the pan bone region, and a decrease in response to a 

distant sound source when the lower jaw was acoustically shielded. More recent 

studies using the odontocete auditory brainstem response and suction cup sound 

projectors supported Bullock et al.’s conclusion that the region of maximum 

sensitivity is slightly forward of the pan bone area (Møhl et al., 1999). 

Imaging studies in dolphins have identified mandibular fat channels that could 

serve to capture and intensify incoming sounds in a manner analogous to the external 

ear canal of terrestrial mammals (Ketten, 1994, 1997). Finite element modeling, 

based on CT imaging and measurements of the elasticity of tissues in an animal’s 

head, identified a possible second pathway for sounds arriving from directly in front 

of an animal, entering the head through soft tissues around the tongue, and passing 

through an opening in the posterior part of the hollow lower jaws, and finally 
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propagating along the mandibular along the mandibular fat bodies to the bony 

complex (Cranford et al., 2008, 2010).  

The role of the middle ear ossicles has been debated in dolphins (Fleischer, 

1973; Norris, 1974; Hemila, 1999; Ketten, 2000). Hearing sensitivity of two beluga 

whales (Delphinapterus leucas) was tested behaviorally, and did not vary at depths of 

5, 100, 200, and 300 m, suggesting that sound is conducted directly from the head 

tissue to the inner ears without involving the middle ear, because increasing pressure 

on the air-filled middle ear would presumably affect its volume and therefore hearing 

sensitivity (Ridgway, 2001). Once the sound has traveled through the odontocete 

mandibular fat channel, sound could be coupled to the bulla through bone conduction 

(McCormick et al., 1970). Other studies have suggested parallel channels; low 

frequency sounds may be transmitted to the TPC through bone conduction, and 

higher frequencies through ossicular involvement (Cranford et al., 2010). 

Sensitivity 

 The cetacean species most used for auditory investigations has been the 

bottlenose dolphin (Tursiops truncatus). Johnson (1967) conducted the first 

systematic measurements of auditory sensitivity in the bottlenose dolphin with a 

psychoacoustic go/no-go task. Results demonstrated good sensitivity, i.e. within 10 

dB of the maximum sensitivity, between 15 and 110 kHz, and a very steep high-

frequency roll-off of 495 dB per octave above approximately 110 kHz (Figure 1.1). 

Since this experiment, auditory sensitivity has been measured in several other species 

of odontocetes (Figure 1.1).  Despite the differences in experimental methods and 

species, the audiograms of these cetacean species are remarkably similar in shape, 
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levels of maximum sensitivity, and high-frequency roll-off. Generally, on the low-

frequency end of the U-shaped audiogram, the roll-off is approximately 10-15 dB per 

octave. Maximum absolute sensitivity (or the lowest detection level in a quiet 

environment) for most species ranges between 35 and 55 dB re 1 µPa, and the high-

frequency roll-off is generally at least 100 dB per octave. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Behavioral audiograms from odontocete species, taken from Au & 
Hastings (2008). Original data from the bottlenose dolphin, Tursiops truncatus 
(Johnson, 1967), the Pacific bottlenose dolphin, Tursiops gilli (Ljungblad et al., 1982), 
the killer whale, Orcinus orca (Bain & Dallheim, 1992), Amazon river dolphin, Inia 
geoffrensis (Jacobs & Hall, 1972), beluga, Delphinapterus leucas (White et al., 1978), 
false killer whale, Pseuodorca crassidens (Thomas et al., 1988), Risso’s dolphin, 
Grampus griseus (Nachtigall et al., 1995), tucuxi, Sotalia fluviatilis (Sauerland & 
Denhardt, 1998), harbor porpoise, Phocoena phocoena (Andersen, 1970), Chinese 
river dolphin, Lipotes vexillifer (Wang et al., 1992).  
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Fishes 

Structure 

 Studies of bony fishes reveal a wide range of adaptations for underwater 

hearing. Fishes do not have outer or middle ears, and the inner ear has no cochlea or 

auditory papilla (Popper et al., 1988). The inner ear consists of three semicircular 

canals and three otolithic end organs – the utricle, saccule, and lagena - that serve 

both vestibular and auditory functions (Popper et al., 1988). The motion of the 

otoliths, which are four to five times denser than water, lags with respect to the 

acoustically transparent body, thereby creating a shearing force that bends the hair 

cell ciliary bundles on the sensory epithelium, causing stimulation of the auditory 

nerve (for a recent review, see Popper & Fay, 2011).  

 Underwater, sound has both particle motion and pressure components (Fay & 

Popper, 1974, 2000). Most commonly, hearing involves the detection of particle 

motion, when the sound wave travels through the water and acoustically transparent 

body (Fay & Popper, 2000). Certain fishes have auxiliary structures that enhance 

sound pressure transmission to the inner ear.  Gas-filled swim bladders, used 

primarily to regulate buoyancy, vibrate in response to sound and in the Otophysi 

fishes (a group of fishes with sensitive hearing, including the carps, minnows, 

catfishes, characins, and knifefishes) transmit this oscillation to the inner ear via 

Weberian ossicles (von Frish, 1938; Fay, 1988; Fay & Popper, 2000; Ladich, 2000). 

These accessory structures can lower auditory thresholds and extend the auditory 

bandwidth by coupling the movements of air spaces to the inner ear.  
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Anterior swim bladder horns, or extensions of the swim bladder towards the 

ear, are the simplest accessory structure, and can be found in some holocentrids 

(squirrelfish) and all clupeids (herrings, shads, sardines, hilsa and menhadens) 

(Coombs & Popper, 1979; Grande & de Pinna, 2004). Gouramis and mormyrids 

(African weakly-electric fishes) have air-filled bubbles that touch the inner ear (Yan, 

1998; Ladich & Fay, 2013). Popper (1974) showed that the swim bladder of the 

goldfish had a flat response from 50 to 2000 Hz, corresponding to the auditory 

bandwidth of that species. This was later confirmed by Finneran and Hastings (2000, 

2004), who used a noninvasive ultrasonic vibration measurement system to show that 

the goldfish’s swim bladder resonance frequency and bandwidth correlated with its 

most sensitive region of hearing.  

Sensitivity 

 The auditory sensitivity of fish is as varied as the structure of the peripheral 

auditory anatomy across species. Species that possess potential specializations, such 

as those described above, for sound pressure detection, such as weakly electric fish, 

otophysines, and gouramis, have lower sound pressure thresholds (55-83 dB re 1 µPa) 

and broader bandwidth (100 Hz-3 kHz) hearing capability than species without these 

specializations (Fay, 1988; Ladich & Fay, 2013) (Figure 1.2). Several species 

(American shad Alosa sapidissima, Gulf menhaden Brevoortia patronus) have been 

shown to respond to high intensity ultrasound up to about 200 kHz (Mann et al., 1997, 

1998). Species that do not have a swim bladder, such as the elasmobranchs, or 

teleosts without a connection between the swim bladder and inner ear, generally have 

best sound pressure thresholds above 90 dB re 1 µPa, and a bandwidth of 100 Hz to 1 
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kHz (Fay, 1988; Ladich & Fay, 2013). However, auditory thresholds reported in 

terms of pressure can be misleading for these non-specialized species because all fish 

detect acoustic particle motion directly with the inner ear as well as with the lateral 

line, and some species are primarily particle motion sensitive. Therefore, auditory 

thresholds reported in terms of pressure may not actually represent the detection of 

acoustic pressure, but rather a combination of acoustic pressure and particle motion, 

or just particle motion.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Behavioral sound pressure audiograms for various fish species taken from 
Fay (1988) and Au & Hastings (2008). Dotted lines are considered hearing generalists 
and solid lines are hearing specialists (from Popper & Fay, 1999).  
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Amphibious Hearing 

Pinnipeds 

Structure 

There is a 3600-fold difference between the impedance of water and air.  In 

the air, the mammalian middle ear serves to compensate for losses due to this 

impedance difference between the surrounding air and the fluid-filled inner ear. 

Underwater, however, this function of the middle ear may not be necessary, and 

instead, the ear must function to detect sound that can travel through the body.   

 Phocids (true seals) do not have pinnae, while otariids (sea lions) and 

odobenids (walrus) have very small pinnae that may function to close the external 

meatus during diving (Kastalein, 1996). In air, spectral filtering by pinnae plays a 

significant role in sound localization in the vertical plane, so the lack of a functional 

pinna may limit some localization abilities (Middlebrooks & Green, 1991). In 

pinnipeds, the auditory meatus is very narrow and has several bends, and is lined with 

cerumen and wax-covered hair (Rampreashad et al., 1972; Kastalein et al., 1996). 

Unlike the dolphins, the external meatus may be functional in pinnipeds, at least in 

the air (Møhl & Ronald, 1975; Kastalein et al., 1996).  

Underwater, an air-filled middle ear would create an impedance mismatch and 

therefore a loss of sensitivity, therefore it is possible that pinnipeds hear through bone 

conduction (Repenning, 1972; Ramprashad, 1975; Hemilä et al., 2006), much like a 

human underwater (Brandt & Hollien, 1969; Hollien & Brandt, 1969; Repenning, 

1972). Consistent with this hypothesis, the area of maximum sensitivity on the head 

appears to be directly below the auditory meatus (Møhl & Ronald, 1975).  
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 Pinnipeds have several adaptations to compensate for increasing pressure 

while diving, and these may or may not affect hearing abilities. The meatal opening 

can be closed actively by surrounding muscles while diving, trapping air inside 

(Welsch & Riedelsheimer, 1997; Stenfors et al., 2000). The bony tympanic bulla and 

meatus is also covered with cavernous tissue, which is highly vascularized and fills 

with blood to compensate for increasing pressure on the tympanic membrane as the 

animal dives (Repenning, 1972; Stenfors et al., 2001). It is possible that when this 

tissue is flooded with blood on both sides of the tympanic membrane, acoustic 

conductance could occur through the traditional tympanic route (Møhl, 1968; 

Repenning, 1972; Moore & Schusterman, 1987; Terhune, 1989). Behavioral hearing 

measurements of a California sea lion (Zalophus californianus) at depths of 10 m and 

50 m demonstrated that at 10 m, sensitivity matched surface values, but at 50 m the 

threshold for high-frequency sounds was significantly lower (Kastak & Schusterman, 

2002). This suggests that the sea lion middle ear is functional underwater. If hearing 

sensitivity did not change with depth, this would suggest that sound is conducted 

directly to the inner ear without passing through the middle ear (because increasing 

pressure on the air-filled middle ear would presumably affect its volume and therefore 

hearing sensitivity) (Ridgway et al., 2001; Kastak & Schusterman, 2002). In the sea 

lion, high frequency sensitivity in shallow water could be poor because of reflection 

off the middle ear, but in deeper water, the sensitivity could improve because of the 

expansion of cavernous tissue on both sides of the tympanic membrane (Kastak & 

Schusterman, 2002). 
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Sensitivity 

The first measurement of a pinniped audiogram by Møhl (1968) revealed a U-

shape with similar characteristics to cetaceans, with a steep high-frequency roll off 

and a flatter low-frequency roll-off. Maximum sensitivity for this harbor seal was at 

32 kHz underwater, and approximately 10 kHz in the air. The harbor seal had better 

underwater sensitivity and bandwidth than in air. Since this experiment, underwater 

sensitivity has been measured in the California sea lion, Zalophus californianus 

(Schusterman et al., 1972), harp seal, Pagophilus groenlandicus (Terhune & Ronald, 

1972), ringed seal, Pusa hispida (Terhune & Ronald, 1972), Northern fur seal, 

Callorhinus ursinus (Schusterman & Moore, 1978), Hawaiian monk seal, Monachus 

schauinslandi (Thomas et al., 1988), elephant seal, Mirgounga angustirostris (Kastak, 

1996), and Steller sea lion, Eumetopias jubatus (Kastalein et al., 2005) (Figure 1.3). 

The in-air sensitivity has been measured for the harbor seal, harp seal, California sea 

lion, Northern fur seal, and elephant seal (Møhl, 1968; Terhune & Ronald, 1971; 

Schusterman & Moore, 1980; Kastak, 1996) (Figure 1.4).  Auditory bandwidths for 

all species are wider underwater then in air. Maximum underwater sensitivity is 

relatively consistent across pinniped species (approximately 60-70 dB re 1 µPa), but 

in-air hearing varies greatly across species, without any consistent correlation with 

amount of time spent in the water, diving ability, or sound production (Au & Hastings, 

2008).  
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 Figure 1.3. Underwater behavioral audiograms from various pinniped species, taken 
from Au & Hastings, 2008. Original data from the harbor seal, Phoca vitulina (Møhl, 
1968; Kastak, 1996), California sea lion, Zalophus californianus (Schusterman et al., 
1972; Kastak, 1996), harp seal, Pagophilus groenlandicus (Terhune & Ronald, 1972), 
ringed seal, Pusa hispida (Terhune & Ronald, 1975), Northern fur seal, Callorhinus 
ursinus (Schusterman & Moore, 1978), Hawaiian monk seal, Monachus 
schauinslandi (Thomas et al., 1988), and elephant seal, Mirgounga angustirostris 
(Kastak, 1996). 
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Figure 1.4. In-air behavioral audiograms of various pinniped species, taken from Au 
& Hastings, 2008. Original data from the harbor seal, (Møhl, 1968; Kastak, 1996), 
harp seal, (Terhune & Ronald, 1971), California sea lion (Schusterman, 1974; Kastak, 
1996), northern fur seal (Schusterman & Moore, 1980), and elephant seal, Mirgounga 
angustirostris (Kastak, 1996).  

Frogs and Turtles 

Structure	
  

Similar to pinnipeds, some frogs and turtles are amphibious and must contend 

with hearing both in-air and underwater. They will be considered together here. The 

anurans do not have pinnae, and many species do not have a tympanic membrane or 

middle ear cavity (Mason, 2007). In anurans that do have a tympanic membrane, it is 

typically visible on the head of the frog behind the eye, and the single middle ear 

bone, the columella, spans the middle ear cavity. Vibrations of the columella are 

transmitted to the inner ear via the oval window. “Earless” frogs like the European 

fire-bellied toad, Bombina bombina (those without a tympanic membrane, middle ear 

cavity, and columella), can still have a well-developed inner ear (Jaslow et al., 1988). 
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Their inner ears may be stimulated via extra-tympanic pathways, including the lungs 

and mouth cavity (review in Christensen-Dalsgaard, 2005). Some frog species, such 

as the Ranids, are mainly terrestrial outside of the mating season, whereas others, 

such as members of the genus Xenopus, are fully aquatic and show several 

specializations for hearing underwater. The Xenopus ear is anatomically different 

from terrestrial frogs (Wever, 1984). Instead of a tympanic membrane, Xenopus has a 

cartilaginous tympanic disk covered by fat and skin and suspended in a membranous 

frame. Christensen-Dalsgaard et al. (1990) proposed that resonance of the air-filled 

middle ear in the underwater sound field mediates sensitive responses to sound 

underwater.  

 Like the anurans, the testudines (turtles and tortoises) range in degree of 

aquatic adaptation. Like Xenopus, testudines have a cartilaginous tympanic disk, 

visible behind the eye that vibrates via a hinged connection to the bony capsule wall 

surrounding it (Wever & Vernon, 1956; Christensen-Dalsgaard et al., 2012). A 

columella attached to the tympanic disk extends through the large middle ear cavity 

to the oval window (Willis et al., 2012).  

Sensitivity 

Christensen-Dalsgaard et al. (1990) found that the Xenopus ear was 30 dB 

more sensitive to sound pressure underwater than in air, suggesting adaptations for 

hearing underwater, whereas the Ranid ear showed a greater sensitivity in air 

(Lombard et al., 1981). Christensen-Dalsgaard and Elepfant (1995) hypothesized that 

air in the lungs vibrates much like a swim bladder in a fish, and that these vibrations 

are coupled to the middle ear via the larynx.  



	
   15	
  

 Using laser vibrometry and the auditory brainstem response, Christensen-

Dalsgaard et al. (2012) found that the red-eared slider (Trachemys scripta elegans) 

was most sensitive to sound underwater. The tympanic disc is the sound receiver, and 

their underwater sensitivity depends on resonance of their large air-filled middle ear.  

Thresholds in water, when compared in terms of sound intensity, were approximately 

20-30 dB lower than in air. Therefore, the sensitivity of the turtle to underwater sound 

is broadly comparable to the sensitivity of both Xenopus (Elliott et al., 2007) and 

otophysine fish (for review, see Popper & Fay, 2011), allowing for the difference in 

experimental design and the generally higher thresholds in ABR experiments (see 

below, chapter 2).  

Diving Birds 

The class Aves includes 29 orders, and a total of approximately 10,000 

species.  Eight of these orders include birds that dive to some extent while foraging: 

Anseriformes (waterfowl), Charadriiformes (gulls and allies), Gaviiformes (loons), 

Podocipediformes (grebes), Procellariiformes (albatrosses, petrels, and allies), 

Sphenisciformes (penguins), and Phaethontiformes (tropicbirds). Diving bird species 

are spread throughout the avian taxa (Figure 1.5). Species used in this dissertation 

come from three families: the diving ducks in the family Anatidae (ducks, geese and 

swansa), the red-throated loon (Gavia stellata) in the family Gavidae (loons), and the 

northern gannet (Morus bassanus) in the family Sulidae (boobies and gannets). 	
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Figure 1.5. Avian phylogeny taken from Hackett, 2008. Boxes surround groups that 
were used in this dissertation.  



	
   17	
  

  
Across all diving birds, time spent underwater ranges from minimal plunges in gulls 

and waders to extensive diving in penguins and puffins. At the shallow end of the 

diving continuum, the diving ducks can dive to depths of tens of meters for up to a 

few minutes (Roberston et al., 2002).  

 At the other end of the continuum are the penguins. The emperor penguin 

(Aptenodytes forsteri) has a recorded maximum dive greater than 500 m and lasting 

over 23 min (Meir, 2008). In addition, other penguin species demonstrate well-

developed diving abilities. King penguins (Aptenodytes patagonicus) can dive to 

depths of over 300 m (Kooyman et al., 1992), gentoo penguins (Pygoscelis papua) 

over 200 m (Bost et al., 1994), and adelie penguins (Pygoscelis adeliae) close to 100 

m (Chappell et al., 1993). In addition, many penguin species, including adelie, 

macaroni (Eudyptes chrysolophus), and king, dive frequently at night when visibility 

is low (Croxall et al., 1988; Kooyman et al., 1992).  

 Species from the family Alcidae (auks, murres, puffins, and guillemots) also 

dive to great depths. Incidental catches of alcids from fishing nets revealed that 

common murres (Uria aalge), razorbills (Alca torda), Atlantic puffins (Fratercula 

arctica), and black guillemots (Cepphus grille) can dive to 180, 120, 60, and 50 m, 

respectively (Piatt & Nettleship, 1985). Underwater cooperative foraging has also 

been observed in several alcid species including marbled murrelets (Brachyramphus 

marmoratus), least auklets (Aethia pusilla), and crested auklets (Aethia cristatella 

(Hunt et al., 1993; Speckman et al., 2003).  

 Many studies have been conducted to investigate the role of sound in the lives 

of diving birds while they are out of the water. Most penguin species rely on sound to 
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individually identify their mates and chicks, to attract potential mates, and defend 

territories. Nesting penguin species, such as the adelie penguin and gentoo penguin, 

use call pitch to discriminate between individuals in the colony (Jouventin & Aubin, 

2002). Little blue penguins (Eudyptula minor), a nocturnal, cave-dwelling species, 

can also distinguish individuals through the use of auditory cues (Nakagawa et al., 

2001). 

The two non-nesting species, the emperor and king penguins, have evolved 

more complex methods for individual recognition amongst several thousands of 

unrelated birds in the tightly packed, noisy colony (Aubin et al., 2000). Emperor 

penguins cannot identify their mates or chicks visually (Jouventin, 1982). Instead, 

both species identify their mates and chicks through the use of the “two-voice” 

system. These species produce two slightly different fundamental frequencies 

simultaneously which interact with each other and generate a beat (Aubin et al., 2000). 

This amplitude modulation, along with other temporal and spectral cues, allows each 

individual to create its own stereotyped vocal signature (Lengagne et al., 2000).  

Bird Hearing 

Structure 

Birds lack pinnae, but have a feather-covered external auditory canal. Feathers 

covering the canal may be adapted for minimizing air (or water) turbulence during 

flight or diving, and for waterproofing in diving birds (Rijke, 1970). Like the 

amphibians and reptiles, birds have a single middle ear ossicle, the columella, 

connecting the tympanic membrane to the oval window. Diving birds, like other 

aquatic animals that dive to considerable depths, have ear adaptations for increasing 
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water pressure, such as a cavernous tissue in the meatus and middle ear, and active 

muscular control of the meatal opening (Sade, 2008). In addition, some alcids have a 

flap of skin covering the meatus that, when closed due to increased pressure during 

diving, causes a body of fat to press against the tympanic membrane (personal 

communication, D. Ketten, 2013). 

Sensitivity 

The single columella ear allows for efficient transmission of sound (Manley, 

1981, 2010), but its efficiency deteriorates at high frequencies (> 4 kHz), and even in 

birds that are adapted to hearing high frequency sounds, such as the barn owl 

(Tytonidae), swiftlets (Collocaliini), and oil birds (Steatornis caripensis), the upper 

frequency limit is less than 15 kHz (Manley, 1981; Manley & Gleich, 1992). Many 

mammals with high-frequency hearing have an upper limit near 50 to 70 kHz. Thus, 

the basic structure of a single-ossicle middle ear probably limits the high-frequency 

limit of bird hearing (Manley, 2010).  

Hearing has been measured behaviorally in approximately 50 species of birds 

(Dooling, 2002). Sensitivity is greatest between about 1 and 5 kHz, with absolute 

sensitivity often approaching 0-10 dB re 20 µPa between 2-3 kHz (Dooling, 1980, 

1982, 1992, 2000, 2002). The passerines (perching birds – includes song birds) on 

average have more sensitive high-frequency hearing than other birds (Figure 1.6). 

Nocturnal predators, such as the barn owl and great-horned owl (Bubo virginianus) 

have very low absolute thresholds, as shown by the Strigiformes in Figure 1.6 

(Konishi, 1973; Van Dijk, 1973; Dyson, et al., 1998).   
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Figure 1.6. Median audiograms, taken from Dooling (2002), for three groups of birds 
– Passeriformes (perching birds) - 20 species, Strigiformes (owls) – 13 species, and 
other non-Passeriformes – 15 species. The bird species in this dissertation fall under 
the “other non-Passeriformes” grouping.	
  

Methods to Test Auditory Sensitivity 
	
  
 Auditory sensitivity can be measured using psychophysical or 

electrophysiological methods. There are many variations within these two 

measurement categories, but for this dissertation the focus will be on a comparison of 

two techniques: a psychoacoustic go/no-go task, and the auditory brainstem response 

(ABR). 

Psychoacoustics 

Psychoacoustics has been used to measure auditory sensitivity in many marine 

mammal species (Hall & Johnson, 1971; Jacobs & Hall, 1972; Schusterman et al., 

1972; White et al., 1978; Thomas et al., 1988; Nachtigall et al., 1995; Ridgway & 

Carder, 1997; Sauerland & Denhardt, 1998; Kastalein et al., 2002; Kastalein et al., 
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2003; Kastalein et al., 2005), bird species (Trainer, 1946; Dooling et al., 1971; 

Maiorana & Schleidt, 1972; Dooling & Saunders, 1975; Hienz et al., 1977; Cohen et 

al., 1978; Dooling et al., 1979; Saunders & Salvi, 1993; Dooling & Okanoya, 1995; 

Langemann et al., 1998), as well as a wide range of other animals (for review, see Fay, 

1988).  

The field of psychophysics is concerned with investigating the relationship 

between psychological sensation and physical stimuli. One ultimate goal of 

psychophysics is determining sensory thresholds (Fechner, 1860; Stebbins, 1970; 

Gescheider, 2013). In psychoacoustic estimation of detection thresholds, the subject 

is trained to respond with a particular behavior in the presence of a stimulus and in a 

different manner if the stimulus is absent. The psychophysical studies described in 

this dissertation were conducted using operant conditioning, a term first coined by 

B.F. Skinner in 1938, in which the subject receives positive reinforcement (usually a 

food reward) when it performs a particular behavior in response to the stimulus. 

Sometimes a secondary reinforcer precedes the food reward, such as a whistle or click, 

which can be useful to provide immediate feedback, and avoid overfeeding, etc..   

Classical conditioning, while more common in past decades, is still used in 

some experiments (Schusterman, 1980; Fay, 1995; Early et al., 2001; Heffner et al., 

2013). In this method, an unconditioned stimulus, such as an electric shock or a puff 

of air to the eye, is used to elicit a physiological response (a change in respiratory rate 

or heart rate) or behavioral response (such as an eye-blink). The unconditioned 

stimulus is paired repeatedly with the acoustic stimulus until the acoustic stimulus 

alone elicits the measured response.  
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In a psychoacoustic go/no-go task, which is the method used in this 

dissertation, the subject is trained to respond with a particular behavior, such as 

touching an object or producing a sound, in the presence of the stimulus (go) and to 

not respond when the stimulus is absent (no-go). This is in contrast to a yes/no task in 

which the animal is trained to do one task for “yes” and another to “no” (Gerstein et 

al., 1999; Jensen & Klokker, 2006).   

In go/no tasks, the presentation of the stimulus occurs after the animal has 

stationed at a particular location in a particular orientation (at a button or paddle, in a 

hoop, at a bite-plate, etc.). Once the stimulus is presented, the subject has a fixed time 

period to respond (go) with the desired behavior. If no stimulus is presented, the 

subject remains stationed until the trial has ended (no-go). There are four possible 

outcomes in this task, shown in Figure 1.7: when a stimulus is present, the subject can 

either respond correctly (“hit”) or fail to respond (“miss”). If the stimulus is absent, 

the subject can either respond as if there were a stimulus (“false alarm”) or not 

respond (“correct rejection”).  
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Figure 1.7. The four possible responses in a go/no-go task such as the one described 
in this dissertation. The signal (a tone in this case) is either present or absent on any 
given trial, and the subject either responds (go) or not (no-go).  

 

There are several widely used methods for presenting the stimuli to the subject.  

The method used in this dissertation is the modified method of constant stimuli in 

which the stimulus set (all stimulus values) is pre-selected before testing begins and 

does not change as a result of the subject’s responses (Stebbins, 1970; Dooling & 

Okanoya, 1995; Kastak & Schusterman, 1998; Wolski et al., 2003). In a detection 

task, a set number of different stimulus levels are pre-selected and usually presented 

to the subject in a random order for each block of trials (Figure 1.8).  
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Figure 1.8.  The method of constant stimuli. In this example, there are seven 
individual stimulus presentations, ranging from 10-70 dB re 20 µPa. The presentation 
order is random in each block.  

 

Threshold is then defined as the stimulus value associated with a specific 

performance level on stimulus-present trials. This value is usually defined as the 

stimulus level corresponding to 50% correct detection (Levitt, 1971; Dooling & 

Okanoya, 1995).  The example below (Figure 1.9), taken from Dooling & Okanoya 

(1995), shows a psychometric function from adult Coturnix quail (Coturnix japonica) 

in a go/no-go psychoacoustic detection task. The stimuli were presented using the 

method of constant stimuli – the level of the stimulus varied in 10 dB step sizes from 

0 to 60 dB re 20 µPa presented in random order. Threshold was then defined as the 

sound pressure level associated with 50% correct detection on the psychometric 

function (6.2 dB re 20 µPa).   
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Figure 1.9. A psychometric function from a quail, taken from Dooling & Okanoya 
(1995). Threshold was defined at the 50% correct level.  

 

The major advantage for using the method of constant stimuli is that the 

stimuli are presented in random order; and therefore, the subject cannot anticipate 

future stimulus levels. Thus, any errors of expectation are minimized.  

Another method for stimulus presentation is the method of limits, in which the 

stimuli are presented in small steps in either ascending or descending order, and the 

subject responds on each trial to the presence or absence of the stimulus (Gescheider, 

1997; Syzmanski et al., 1999). Threshold is then estimated as the midpoint between 

the stimulus steps where the subject changed from a stimulus-present response to a 

stimulus-absent response. Usually, ascending and descending series are used in 

alternation. Unlike the method of constant stimuli, threshold is not determined by a 

statistical probability. However, a disadvantage is that the non-random sequence of 

stimuli can introduce errors of expectation from the subject. 
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The up/down staircase method is a variation of the method of limits in which 

the stimulus values are changed during testing based on the subject’s responses 

(Figure 1.10) (Cornsweet, 1962; Robinson & Watkins, 1973; Gerstein et al., 1999; 

Wolski et al., 2003). When the animal responds correctly to the presence of a 

stimulus, the stimulus level is decreased on the next trial, and this decrease continues 

until the animal fails to respond (miss) to the presence of a stimulus. After this miss, 

the stimulus level is then increased until the animal makes a correct response, and 

then decreased again after the correct response until the next miss. This yields a series 

of reversals, as in Figure 1.10. In this method, the threshold is then defined by 

averaging the stimulus values across reversal points (Kastak & Schusterman, 1998). 

This threshold is equivalent to the 50% correct detection threshold obtained with the 

method of constant stimuli (Levitt, 1970).   

 

 

Figure 1.10. The up/down staircase method of stimulus presentation, taken from 
Kalloniatis & Luu (1995). In this example, a Y = a correct response to the presence of 
a stimulus, and a N = no response to the presence of a stimulus. The stimuli in this 
example are presented in ascending order, until a “Y,” after which the stimulus is 
decreased until an “N” occurs, at which time the stimulus is increased again.  
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The staircase method is efficient because it concentrates only on stimulus 

intensities near threshold, but a task in which most of the values are close to threshold 

can be difficult for an animal subject. The subject can also anticipate the approach to 

threshold, leading to errors similar to the method of limits.  

Stimulus detection tasks are sensitive to the non-sensory biases of the animal, 

such as motivation and expectation (Green & Swets, 1966). Signal detection theory 

can be used to account for differing probabilities of detection and false alarm rates 

(Green & Swets, 1966). According to signal detection theory, the sensory evidence 

that a signal is present falls on a continuum, and the strength of this evidence varies 

from trial to trial (Ehrenstein & Ehrenstein, 1999). The amount of “noise” also varies 

across trials, so that even on a trial where there is no stimulus present, there is some 

evidence to the subject that it might be present. This creates two distributions – a 

signal + noise distribution when the signal is present, and a noise distribution when a 

signal is not present (Ehrenstein & Ehrenstein, 1999) (Figure 1.11). The subject sets 

some criterion, that if exceeded will respond that signal is present (Green, 1960). 

Using mathematical models, the subject’s responses can be utilized to determine the 

subject’s criterion and its interaction with the physical properties of the signal (Green, 

1960). The variation based on the subject’s criterion can then be removed to leave a 

more reliable measure of the signal detectability.  
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Figure 1.11. Psychophysical distributions of noise (N) and signal + noise (SN), taken 
from (Ehrenstein & Ehrenstein, 1999). Sensory magnitude, from weak (left) to strong 
(right) is plotted on the horizontal axis, and sensory excitation on the vertical axis. A 
subject’s theoretical criterion (c) and sensitivity (d) are shown.   

 

One measure of observer sensitivity is d', calculated from the subject’s hit and 

false alarm rates, and defined as the distance between the means of the signal + noise 

and noise distributions on Figure 1.11 (Swets, 1959; Green & Swets, 1966). This 

discriminability index is a measure of how well the subject can separate the presence 

of a signal from noise. The larger the value of d', the larger the separation between 

signal and noise, with a d' of 0 representing chance-level discrimination (Green & 

Swets, 1966).  

In a psychoacoustic go/no-go task, threshold can be defined at a particular 

particular d' value instead of at 50% correct detection, using the subject’s particular 

false alarm rate and calculating a new hit rate. For example, Dooling & Okanoya 

(1995) defined threshold for four quail as 50% correct detection using the method of 

constant stimuli. They then also defined threshold using signal detection theory, using 
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each bird’s false alarm rate and calculating a new hit rate corresponding to given 

levels of d' (1.0, 1.5, and 2.0) (Figure 1.12). They found that the threshold 

corresponding to a hit rate of 50% generally tracked a d' of about 1.5 (Figure 1.12). 

 

 

 

Figure 1.12. Audibility curves for four quail, from Dooling & Okanoya (1995). The 
solid line represents the average threshold corresponding to a hit rate of 50%. The 
dashed lines represent thresholds for three levels of d' (1.0, 1.5, and 2.0).  

Auditory Brainstem Response 

The auditory brainstem response (ABR) can be measured using non-invasive 

recordings of evoked auditory activity to estimate the auditory sensitivity of an 
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animal. Auditory sensitivity is measured through the evoked potential response of the 

nervous system along the auditory pathway from the auditory nerve to the auditory 

brainstem. The ABR is a scalp-recorded potential resulting from neural discharges 

(population response) synchronized by the onset of a brief acoustic stimulus (Jewett 

et al., 1970; Jewett & Williston, 1971). The animal’s auditory sensitivity may be 

estimated by measuring changes in the ABR in response to decreasing intensity 

acoustic stimuli. When the stimulus intensity decreases, the ABR latency increases 

and the amplitude of the ABR decreases until it is no longer distinguishable from 

noise, using either visual detection or image recognition algorithms (Hall, 1992).  

The ABR is a type of auditory evoked potential that occurs early, 

(approximately 1-7 ms) following the onset of the stimulus, as opposed to longer 

latency evoked potentials typically recorded from cortex (Hall, 1992). The response is 

manifested as a series of waves occurring (Figure 1.13. 1.14). In both birds and 

mammals, these signals are low-amplitude, up to approximately 10 µV, and only 

detectable through the averaging of many replications (typically 500-1,000) as well as 

the removal of large voltage artifacts due to muscle movements (Hall, 1992). The 

ABRs are generally regarded as the summation of several signals generated in 

different portions of the auditory system, usually denoted by roman numerals (Hall, 

1992).   
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Figure 1.13. The ABR audiogram evoked by a 100 dB SPL click from the cat, taken 
from Javel, Walsh, & McGee (1986).  
 

The human ABR consists of seven waves, which used to be attributed to seven 

different structures in the ascending auditory system: Wave 1 – auditory nerve, Wave 

2 – cochlear nucleus and trapezoid body, Wave 3 – superior olive complex, Wave 4 – 

lateral lemniscus, Wave 5 – inferior colliculus, Wave 6 – medial geniculate body of 

the thalamus, Wave 7 – medial geniculate body (Spehlmann, 1985).  This wave-to-

point correlation may be too simplistic, however, and structures may contribute to 

more than one wave (Møller, 1994). Neural correlates for the ABR waves are 

unknown for bird species, but several studies show that the first peak in bird ABRs 

may be attributed to the auditory nerve (Katayama, 1985; Brown-Borg et al., 1987; 

Köppl & Gleich, 2007).   
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Figure 1.14. Screech owl and budgerigar ABR waveforms evoked by a 100 dB SPL 
click stimulus (Brittan-Powell et al., 2002, 2005). The third peak in the screech owl 
waveform most likely corresponds to the second peak in the budgerigar waveform, 
and the second peak in the owl closely corresponds to the shoulder on wave 1 in the 
budgerigar.  

 

Thus, the ABR is a useful tool for determining the shape of the audiogram and 

range of hearing. It should be noted that ABR techniques are not, however, suitable 

for determining absolute thresholds, i.e. the lowest detection level in a quiet 

environment, because they rely upon synchronous activation of a population of 

neurons.  

Many studies have directly compared audiograms resulting from 

psychoacoustics and the ABR and most show a similar pattern. While audiograms 

obtained from both methods maintain a similar shape, ABR thresholds are usually 

higher (less sensitive) than psychoacoustic thresholds, as demonstrated with rabbits 

(Oryctolagus cuniculus - Borg & Engström, 1983), rats (Rattus norvegicus – Borg, 
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1982), harbor seals (Phoca vitulina – Wolski et al., 2003), bottlenose dolphins 

(Tursiops truncatus – Houser & Finneran, 2006), a false killer whale (Pseudorca 

crassidens – Yuen et al., 2005), several songbird species (Henry & Lucas, 2008), and 

budgerigars (Melopsittacus undulatus – Figure 1.15; Brittan-Powell et al., 2002). The 

threshold differences range across species and frequencies, but are often 10-15 dB 

(Gorga et al., 1988). There is some evidence that increased consistency across testing 

environment (acoustic properties of the room; activity state of subject), stimulus 

characteristics (duration and bandwidth), presentation method (headphones or free-

field sound, placement of speaker), and analysis (averaging, detection method) can 

minimize these differences, suggesting that the effect is due to both the organism 

being tested and the procedures used (Szymanski et al., 1999; Schlundt et al, 2007; 

Ladich & Fay, 2013; Sisneros et al., 2013).  
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Figure 1.15. Comparison of the budgerigar ABR and behavioral audiogram (Brittan-
Powell et al., 2002).  ABR audiograms were derived using three methods: 0.5 µV 
signal/noise ratio (open triangle), visual detection method (closed circle), and the 
linear regression (closed square). ABR audiograms estimated by all three methods are 
on average 30 dB higher than the behavioral audiogram.  

 

Stimuli used in ABR studies are short tone bursts (approximately 5 ms) with 

rapid onsets (approximately 1 ms), while tones used for behavioral methods are much 

longer (from 250 ms up to several seconds). Psychoacoustic studies usually use 

longer stimuli because it has been shown that thresholds are higher when the duration 

of the stimuli is shorter than the integration time of the ear (approximately 200-300 

ms for tones in most vertebrates, including birds - Watson & Gengel, 1969; Dooling 

& Searcy, 1985; Brittan-Powell et al., 2002). Therefore, some of the difference 

between ABR and behavioral audiograms can attributed to this stimulus length 
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difference. In addition, because ABRs require short stimuli to evoke a synchronized 

response, such as the onset of a very short tone burst, the auditory system is 

responding to a wider range of the frequencies around the central stimulus frequency, 

especially at low frequencies (Silman & Silverman, 1991; Hall, 1992).   

 The utility of ABR becomes apparent when measuring hearing in an animal 

that cannot be easily trained for psychoacoustics or kept in captivity for an extended 

time period. An entire ABR audiogram can often be constructed after one session of 

approximately 60 min. In comparison, behavioral thresholds involve intensive animal 

training that can take months to accomplish. Although ABR audiograms may not be 

good indicators of absolute thresholds, they are useful for estimating a general range 

of hearing, including the audiogram shape and region of greatest sensitivity (Sisneros 

et al., 2013).  The ABR is also a valuable tool to compare animals tested in the same 

acoustic setup, or the same individual before and after some kind of intervention, 

such as noise exposure (Sisneros et al., 2013).  

Study Systems Used in this Dissertation 
	
  
 Many studies have already investigated the sensitivity, sound production, and 

anatomical adaptations of entirely aquatic animals like cetaceans and fish. 

Amphibious animals face the additional challenge of hearing in more than one 

medium, and therefore must balance trade-offs of adapting to both air and water. 

Some diving birds dive to depths comparable to that of pinnipeds, and while 

considerable attention has been given to pinniped hearing, there are currently no 

investigations into amphibious hearing in diving birds. Diving birds could use 

auditory cues to avoid predators, find food, or for auditory scene analysis, the ability 
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to detect, identify and track relevant sounds in the noise of the surrounding 

environment (Bregman, 1990). While it is a possibility that diving birds communicate 

with conspecifics under the water, underwater sound production has never been 

recorded. These possibilities will be discussed in the dissertation discussion (chapter 

5).  

In-air audiograms already exist for many bird species, and the avian auditory 

system (as it works in air) has been well studied. Both the electrophysiological and 

psychoacoustic methods described in this dissertation have been commonly used in 

the laboratory to examine the avian auditory system. This project includes several 

species of diving ducks, seaducks, and other aquatic birds. While seaducks do dive, 

they can be distinguished from diving ducks by their inclusion in a separate subfamily 

within Anatidae (ducks, swans, and geese) that are essentially marine outside of the 

breeding season. Table 1.1 lists the common name, scientific name, and the average 

mass of each species. Some descriptive details on the species follow the table. 
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Table 1.1. Common name, scientific name, and average mass of each species used in 
this dissertation.  
Common Name Scientific Name Average Mass 

(g) 
Black scoter Melanitta americana 1040 

Common eider Somateria mollisima 1955 

Harlequin duck Histrionicus 
histrionicus 

613 

Lesser scaup Aythya affinis 900 

Long-tailed duck Clangula hyemalis 750 

Northern gannet Morus bassanus 3000 

Red-throated 
loon 

Gavia stellata 1850 

Ruddy duck Oxyura jamaicensis 564 

Surf scoter Melanitta perspicillata 975 

White-winged 
scoter 

Melanitta fusca 1370 

 

Lesser scaup (Aythya affinis) are a medium-sized diving duck that feeds primarily on 

mollusks, crustaceans, and aquatic insects. They are capable of diving to depths of at 

least 15-18 m, for 2-25 seconds at a time. Both males and females vocalize 

throughout the year to signal to mates and offspring. The lesser scaup is one of the 

most abundant and widespread species of diving duck, but its numbers have been 

declining in recent years for unknown reasons (Austin et al., 1998).  

Long-tailed ducks (Clangula hyemalis) are the deepest divers of all diving and 

seaducks, reaching at least 60 m of depth to search for crustaceans, fish, and mollusks. 

They are also arguably the most vocal of the seaducks, with a distinctive and often 
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incessant ow-owoolee male call. They are a true Arctic species, breeding in tundra 

and taiga regions (Robertson & Savard, 2002).  

Surf scoters (Melanitta perspicillata) are a seaduck species that dive mainly for 

mollusks, with a mean dive duration of approximately 30 seconds. Generally silent, 

the male can make a gurgling call during courtship and the females a crow-like call 

when defending ducklings (Savard et al., 1998).  

White-winged scoters (Melanitta fusca) are the largest of all the scoters, and like the 

surf scoters are not very vocal. Females will protect the nest and ducklings with a 

whistle-like call (Brown & Fredrickson, 1997). 

Black scoters (Melanitta americana) are the least studied of all scoters. They 

primarily forage on mollusks and aquatic insects. They are the most vocal of all 

scoters, with the males continuously emitting a frequency-modulated melodious 

whistle (Bordage & Savard, 2011). 

Harlequin ducks (Histrionicus histrionicus), another seaduck species, spend the 

breeding season in clear, fast-moving rivers where they forage for larval insects and 

small crustaceans. Given their nickname of “sea mice,” harlequins produce a constant 

mouse-like squeak during courtship, agonistic interactions, and calls to ducklings 

(Robertson & Goudie, 1999). 

Ruddy ducks (Oxyura jamaicensis) feed primarily on midge larvae and are distinct 

among all diving ducks, because of their unique courtship behavior, which consists of 

slapping their bill on their chest and producing a “belching” sound. These ducks are 

generally silent, except for a high-pitched peep and the courtship sound. They are also 
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extremely aquatic, with legs set so far back on their bodies that walking on land is 

difficult (Brua, 2002). 

Common eiders (Somateria mollisima) are the largest duck found in the northern 

hemisphere and can weigh up to 3040 g. These birds are highly adapted for life in 

frigid waters. Their calls are hoarse, grating and cooing sounds (Goudie et al., 2000).  

Red-throated loons (Gavia stellata) are the smallest members of the loon family 

(Gavidae). They pursue live fish underwater, including herring (Clupeidae), capelin 

(Mallotus villosus) and sculpin (superfamily Cottoidea). They do not “yodel” like 

other loon species, but instead use their “plesiosaur call” as a territorial duet (Barr et 

al., 2000).  

Northern gannets (Morus bassanus) are the largest indigenous seabirds in the North 

Atlantic, belonging to the family Sulidae (boobies and gannets). They obtain live fish, 

mostly mackerel (Scombridae) and herring, through plunge diving, during which the 

bird starts from a height of 10-40m above the water and plunges into the water with 

speeds >100 km/hr. They then pursue fish up to 15 m deep in the water by swimming. 

They breed in dense, noisy colonies on cliffs or islands (Mowbray, 2002).   

Dissertation Outline 
	
  

In this dissertation, I have used behavioral and electrophysiological methods 

to measure in-air and underwater auditory sensitivity in aquatic birds. In chapter 2, I 

used the auditory brainstem response to measure in-air auditory sensitivity in ten 

species of aquatic birds. In chapter 3, I measured in-air thresholds in one species of 

diving duck, the lesser scaup, using both psychoacoustics and the ABR. In chapter 4, 

I measured in-air and underwater sensitivity in a species of seaduck, the long-tailed 
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duck, using psychoacoustics. Chapter 5 summarizes these findings and their 

implications. 
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Chapter 2:  A Comparison of Auditory Brainstem Responses 

across Aquatic Bird Species 

INTRODUCTION 

Hearing abilities have been measured in only approximately 50 of the 10,000 

species of extant birds (Dooling, 2000, 2003). Of these 50 species, only two are 

considered aquatic– the black-footed penguin (Spheniscus demersus; Wever et al., 

1969), and the mallard duck (Anas platyrhynchos; Trainer, 1946). These two species 

are from different taxonomic families, and vary in the habitat they occupy (penguins 

are exclusively marine and mallards are found throughout coastal and freshwater 

waterways), their aquatic lifestyle (penguins are adapted for swimming underwater 

and mallards live at the water’s surface), their social structure (penguins nest in dense 

colonies with males and females both incubating the eggs, while mallard nests are 

scattered throughout a range of environments and only females care for young), and 

foraging habits (penguins pursue live fish, while mallards eat grasses, seeds, and 

invertebrates). The divergence between these two species makes it difficult to 

determine if generalizations about aquatic bird hearing are possible, therefore, there is 

a fundamental need to extend our knowledge of hearing capabilities to other aquatic 

bird species to allow for potential phylogenetic, physiological, and life history 

comparisons.  

Hearing in aquatic bird species may be impacted by general adaptations for 

living in an aquatic environment. Birds that dive more than a few meters may have 

adaptations to compensate for increasing water pressure on internal air spaces, such 
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as the air-filled middle ear. Aquatic mammals may provide examples of how ear 

anatomy is adapted for diving. For example, the ear anatomy of the pinnipeds (seals, 

sea lions, and the walrus) has been adapted for diving in several ways. There is 

muscular control of the meatal opening to prevent water from entering the meatus, 

which is very narrow and waxy (Rampreashad et al., 1972; Kastalein, 1996; Welsch 

& Riedelsheimer, 1997; Stenfors et al., 2000). In addition, the meatus and middle ear 

are lined with cavernous tissue, which is highly vascularized and fills with blood to 

compensate for increasing pressure on the tympanic membrane as the animal dives 

(Repenning, 1972; Stenfors et al., 2000).  

Although ear anatomy in aquatic birds is not well-investigated, some penguin 

species have similar adaptations for diving to those found in mammals, such as the 

cavernous tissue in the meatus and middle ear and active muscular control of the 

meatal opening (Sade, 2008). In addition, aquatic birds have specialized feather 

structure that creates a waterproof outer covering, including over the meatal opening 

(Rijke, 1970). Any of these adaptations for diving could possibly impact auditory 

sensitivity in the air by changing tissue impedances and structural shape.  For 

example, interlocking feathers over the meatus for waterproofing could impede 

sensitivity in the air by creating a sound barrier. 

Aquatic bird families are scattered throughout the avian phylogeny and it is 

assumed that the aquatic lifestyle did not evolve from a common ancestor. Diving 

abilities range greatly across aquatic bird families – with the diving ducks at the 

shallow end of the continuum (tens of meters) and the penguins at the other end 

(greater than 500 m) (Roberston et al., 2002; Meir, 2008). Habitats for different 
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species range from inland ponds and lakes to open ocean. Many aquatic bird species, 

especially marine-oriented seabirds (such as penguins, gannets, albatross, and auks) 

are colonial nesters, with thousands of nesting birds in one small area. Other aquatic 

bird species, such as the ducks or waterfowl, have low densities of nests scattered 

across a wide geographical area. These extensive differences in where birds live may 

have influenced sensory biology and it is important to examine auditory sensitivity 

across aquatic bird species that evolved separate adaptations to life on the water. 

In addition to developing an understanding of aquatic bird hearing to compare 

to non-aquatic birds, such knowledge would also provide valuable information 

relevant to management issues, such as the introduction of man-made noise into 

flyways, critical stopover points during migration, or breeding areas. Aquatic birds 

are exposed to a variety of man-made noise sources, depending on their habitat. 

Species that occupy inland freshwater bodies, like some duck species, are exposed to 

noises typical in populated areas, such as traffic noise. Coastal birds are potentially 

impacted from sources such as recreational boating, commercial shipping, and coastal 

construction. Aquatic birds living farther from the coast could be most exposed to 

noise from commercial shipping and offshore energy development.  

Increased noise levels in a bird’s habitat have the potential to cause a bird to 

alter its communication signals, mask communication signals or other biologically 

relevant sounds, cause avoidance of particular areas, decrease reproductive success, 

and increase physiological stress (Reijnen et al., 1996; Campo et al, 2005; Dooling & 

Popper, 2007; Blickley et al., 2012; McClure et al., 2013; Naguib et al., 2013; 

Slabbekoorn, 2013).  
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Given the lack of information available, it is important to conduct a 

comprehensive investigation into aquatic bird hearing.  Electrophysiological and 

behavioral methods are commonly used in the laboratory to examine the avian 

auditory system. Behavioral audiograms generally produce thresholds that are more 

sensitive than those obtained using the ABR, but these studies require months of 

animal training, and work best with animals in captivity (Borg, 1982; Borg & 

Engström, 1983; Gorga et al., 1988; Brittan-Powell et al., 2002; Wolski et al., 2003; 

Yuen et al., 2005; Houser & Finneran, 2006; Henry & Lucas, 2008). Application of a 

time-efficient, minimally invasive technique such as the auditory brainstem response 

(ABR), can be a valuable physiological method to test hearing in wild aquatic bird 

species. The ABR allows us to explore the auditory system more rapidly than 

behavioral techniques, in as little as one hour, and on wild-caught birds.  

The ABR has been used as a tool for studying the functionality of the auditory 

system in a wide variety of animals, including several species of birds, such as 

budgerigars (Melopsittacus undulatus), screech owls (Megascops asio), several 

woodpecker species, and red-winged blackbirds (Agelaius phoeniceus) (Brittan-

Powell et al., 2002, 2005; Henry & Lucas, 2010; Lohr et al., 2013). The ABR is a 

scalp-recorded potential resulting from synchronized neural discharge (population 

response), manifested as a series of four or more waves occurring within the first 10 

ms following stimulation and representing the progressive propagation of auditory 

neural activity through the ascending auditory pathway (Katayama, 1985; Hall, 1992; 

Brittan-Powell et al., 2002).  



	
   45	
  

The goal of this study was to evaluate the auditory abilities of a variety of 

aquatic birds to extend knowledge of bird hearing to aquatic species, and provide a 

baseline to facilitate future management actions concerning the introduction of noise 

into aquatic bird habitats. Objectives included: 1) comparing hearing sensitivity 

across various aquatic bird species using ABR, 2) evaluate the effects of different 

anesthetics on the ABR, and 3) investigate correlations between hearing sensitivity 

and vocalization characteristics for each species.   

METHODS 
	
  

The Animal Care and Use Committees at both the University of Maryland and 

the U.S. Geological Survey Patuxent Wildlife Research Center (where the birds were 

housed and tested) approved all of the following procedures.  

Subjects 

This study included ten species of birds, with three to ten individuals tested 

per species, based on availability (Table 2.1). The majority of the species tested were 

seaducks and diving ducks. While seaducks do dive, they can be distinguished from 

diving ducks by their inclusion in a separate subfamily within Anatidae (the 

waterfowl: ducks, swans, and geese) that are essentially marine outside of the 

breeding season. Descriptive details for each of the species follow (as duplicated from 

Chapter 1): 

Lesser scaup (Aythya affinis) are a medium-sized diving duck that feeds primarily on 

mollusks, crustaceans, and aquatic insects. They are capable of diving to depths of at 

least 15-18 m, for 2-25 seconds at a time. Both males and females vocalize 

throughout the year to signal to mates and offspring. The lesser scaup is one of the 
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most abundant and widespread species of diving duck, but its numbers have been 

declining in recent years for unknown reasons (Austin et al., 1998).  

Long-tailed ducks (Clangula hyemalis) are the deepest divers of all diving and 

seaducks, reaching at least 60 m of depth to search for crustaceans, fishes, and 

mollusks. Also long-tailed ducks may be the most vocal of the seaducks, having a 

distinctive and often incessant ow-owoolee male call. They are a true Arctic species, 

breeding in tundra and taiga regions (Robertson & Savard, 2002).  

Surf scoters (Melanitta perspicillata) are a seaduck species that dive mainly for 

mollusks, with a mean dive duration of approximately 30 seconds. Generally silent, 

the male can make a gurgling call during courtship and the females a crow-like call 

when defending ducklings (Savard et al., 1998).  

White-winged scoters (Melanitta fusca) are the largest of all the scoters, and like the 

surf scoters, are not very vocal. Females protect the nest and ducklings with a whistle-

like call (Brown & Fredrickson, 1997). 

Black scoters (Melanitta americana) are the least studied of all scoters. They 

primarily forage on mollusks and aquatic insects. They are the most vocal of all 

scoters, with the males continuously emitting a frequency-modulated melodious 

whistle (Bordage & Savard, 2011). 

Harlequin ducks (Histrionicus histrionicus), another seaduck species, spend the 

breeding season in clear, fast-moving rivers where they forage for larval insects and 

small crustaceans. Given their nickname of “sea mice,” harlequins produce a constant 

mouse-like squeak during courtship, agonistic interactions, and calls to ducklings 

(Robertson & Goudie, 1999). 
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Ruddy ducks (Oxyura jamaicensis) feed primarily on midge larvae and are distinct 

among all diving ducks, because of their unique courtship behavior, which consists of 

slapping their bill on their chest and producing a “belching” sound. These ducks are 

generally silent, except for a high-pitched peep and the courtship sound. They are also 

extremely aquatic, with legs set so far back on their bodies that walking on land is 

difficult (Brua, 2002). 

Common eiders (Somateria mollisima) are the largest duck found in the northern 

hemisphere and can weigh up to 3040 g. These birds are highly adapted for life in 

frigid waters. Their calls are hoarse, grating and cooing sounds (Goudie et al., 2000).  

Red-throated loons (Gavia stellata) are the smallest members of the loon family 

(Gavidae). They pursue live fish underwater, including herring (Clupeidae), capelin 

(Mallotus villosus) and sculpin (superfamily Cottoidea).  They do not “yodel” like 

other loon species, but instead use their “plesiosaur call” as a territorial duet (Barr et 

al., 2000).  

Northern gannets (Morus bassanus) are the largest indigenous seabirds in the North 

Atlantic, belonging to the family Sulidae (boobies and gannets). They catch live fish, 

mostly mackerel (Scombridae) and herring, through plunge diving, during which the 

bird starts from a height of 10-40m above the water and plunges into the water with 

speeds >100 km/hr. They then pursue fish up to 15 m deep in the water by swimming. 

They breed in dense, noisy colonies on cliffs or islands (Mowbray, 2002).   
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Table 2.1 Common name, scientific name, number of individuals, whether they were 
captive or wild-caught, and the average mass for the specimens of each species used 
in this study. 

Common Name Scientific 
Name 

Number  Captive or 
Wild-

Caught 

Average 
Mass (g) 

Black scoter Melanitta 
americana 

3 Captive 1040 

Common eider Somateria 
mollisima 

10 Wild-Caught 1955 

Harlequin 
duck 

Histrionicus 
histrionicus 

7 Captive 613 

Lesser scaup Aythya affinis 6 Captive 900 

Long-tailed 
duck 

Clangula 
hyemalis 

7 Wild-Caught 750 

Northern 
gannet 

Morus 
bassanus 

7 Wild-Caught 3000 

Red-throated 
loon 

Gavia stellata 6 Wild-Caught 1850 

Ruddy duck Oxyura 
jamaicensis 

6 Captive 564 

Surf scoter Melanitta 
perspicillata 

9 Wild-Caught 975 

White-winged 
scoter 

Melanitta 
fusca 

6 Captive 1370 

 

Subjects were all adult birds of both sexes, as determined by either captive 

history or plumage patterns. Captive subjects were raised from eggs at U.S. 

Geological Survey Patuxent Wildlife Research Center in Laurel, Maryland. Wild 

subjects were caught as part of an on-going satellite telemetry study (Bureau of 

Ocean Energy and Management, 2013; Sea Duck Joint Venture, 2012) from areas 

along the mid-Atlantic and New England coastline, transported to a veterinary 

hospital for testing, banding, transmitter attachment, and then released. ABR testing 

occurred before transmitter attachment surgery. 
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Experimental Procedures 

All subjects, whether wild-captured or captive, were tested using the same 

procedures and equipment, in a veterinary hospital. Birds were sedated with 

isoflurane (5% for induction, 2-4% for maintenance with oxygen at 1L/min/kg; the 

lowest possible percentage of isoflurane was used to prevent movement in the bird) 

prior to electrode placement. A mask was used to induce isoflurane anesthesia, and 

the bird was intubated once motionless. Electrodes were placed once the bird was 

motionless for several minutes. Body temperature was monitored with a Cooper-

Atkins Electro-Therm thermistor probe (Model TM99A; Middlefield, CT), and 

remained between 38-40°C. The bird was positioned, on a table, so that the speaker 

(Pioneer B11EC80-02F 5-1/4"; Longbeach, CA; frequency response 320 - 6000 Hz) 

was 20 cm from the bird’s right ear (Figure 2.1). 
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Figure 2.1. Top: An intubated surf scoter undergoing an ABR test, showing electrode 
and speaker placement. Bottom: Electrode placement on an intubated black scoter.  
Three electrodes were placed subdermally high on the bird’s forehead (active), 
directly behind the right ear canal (the ear ipsilateral to the speaker, reference), and 
behind the canal of the ear contralateral to stimulation (ground). 
 

Stimuli  

Subjects were presented with stimuli made up of tone bursts of 5 ms duration 

(1 ms rise/fall time and 3 ms steady-state) and 20 ms interstimulus intervals. Tone 

bursts frequencies ranged from 500 – 5700 Hz and intensities from 30-90 dB re 20 

µPa.	
  	
  Each stimulus set was comprised of a train of nine single frequency tone bursts 
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that increased successively in intensity and were presented at a rate of 4/s (Figure 2.2; 

see Brittan-Powell et al., 2002; 2005; 2010). Stimuli within each train increased in 5-

dB steps from 35-55 dB, then in 10-dB steps from 60-90 dB. Sound frequencies were 

presented in ascending order. In addition to the tone bursts, click stimuli were 

presented to the bird at a constant intensity (80 dB re 20 µPa) and with a repetition 

rate of 20/s, at the beginning of data collection and at the end to determine if ABR 

amplitude and latency changed over the course of the trial (due to anesthesia, 

physiological state, etc.). This additional click test was conducted only on those birds 

that were not going into surgery for satellite transmitter implantation after the ABR 

(n=28; all captive birds listed in table 2.1) in order to minimize the time that these 

birds were anesthetized.  	
  

 

Figure 2.2. A sample stimulus train, with 7 of the 9 tone bursts displayed on an 
oscilloscope screen. It was not possible to display all 9 tone bursts simultaneously 
because of scaling – the two highest amplitude stimuli are not in the recording. 
Arrows point to the two lowest amplitude stimuli. These stimulus voltages were 
recorded at the input to the speaker.  
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Recording Equipment and Procedure 

    Three standard platinum alloy needle electrodes (Grass F-E2; West Warwick, 

RI) were placed subdermally high on the bird’s forehead (active), directly behind the 

right ear canal (the ear ipsilateral to the speaker, reference), and behind the canal of 

the ear contralateral to stimulation (ground), (Figure 2.1) as in Brittan-Powell et al. 

(2002; 2005; 2010). Shielded electrode leads were twisted together to reduce 

electrical noise through common-mode rejection.  

     The stimulus presentation and ABR acquisition were synchronized using a 

Tucker-Davis Technologies (TDT; Gainesville, FL, USA) mobile real-time processor 

(RM2) controlled by a Gateway PC (Irvine, CA) (Figure 2.3). Sound stimulus 

waveforms were generated using OpenABR software (developed by Dr. Edward 

Smith, University of Maryland) and fed to the RM2 for D/A conversion, and then 

through an amplifier (Pyle PLMRMP1A; Brooklyn, NY) to drive the speaker. The 

electrodes were connected to a TDT RA4LI headstage and RA4PA Medusa 

preamplifier that amplified at 20X gain and digitized the signal before sending it over 

fiber optic cables to the TDT RM2, after which they were analyzed using OpenABR.   
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Figure 2.3. Diagram of ABR equipment set-up. 

Each ABR represents the average response of 600 stimulus train presentations 

(alternating polarity/phase to cancel the cochlear microphonic), sampled at 20 kHz for 

235 ms following onset of the stimulus. This allowed for 25 ms recording time for 

each stimulus. The biological signal was amplified and notch filtered at 60 Hz with 

the OpenABR software. The signal was bandpass filtered between 30 Hz and 3,000 

Hz after collection using ABRomatic software (also developed by Dr. Edward Smith, 

University of Maryland).  

 Stimulus intensities were calibrated in the free field by placing a ¼” 

microphone (Earthworks M30-Calibrated; Milford, NH) at the approximate position 

of the animal’s ear (20 cm from the speaker). The microphone was connected to an 
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iPad in an Alesis IO Dock (Cumberland, RI) running Signal Scope Pro software SPL 

module (Faber Acoustical; Santaquin, UT) that displayed the sound pressure level of 

calibration tones. The microphone and Signal Scope software were calibrated prior to 

each testing session by playing a known SPL tone through the system with a CEM 

5C-05 calibrator (Shenzhen, China). Calibration through the OpenABR software 

consisted of playbacks of one-second tones which were then measured using the fast-

weighting flat setting in Signal Scope and the dB levels were entered back into 

OpenABR for adjustment.  

 At the end of the experiment, the electrodes were removed. Birds remained 

isolated in a crate and monitored until they showed normal alertness (head held 

upright, eyes remaining open, normal preening behavior) returned (usually 1-2 hours). 

Birds were then returned to the captive flock or released at the capture location. 

Captive birds were checked throughout the next day (identified by unique leg bands) 

to ensure good health and recovery. The health of the wild birds was monitored using 

a body temperature sensor incorporated into the implanted telemetry device. No 

morbidity or mortality was found associated with the ABR testing.  

Statistical analyses were performed using GraphPad Prism statistical software 

(GraphPad Software, Inc., La Jolla, 2013).  All statistical tests were considered 

significant at the 5% level. 

Latency and Amplitude: 

 The amplitude and latency of the first peak of the ABR was measured for all 

stimulus frequencies and intensities tested (Figure 2.4). The latency was corrected for 

the acoustic delay between the speaker and the bird’s ear (0.59 ms). The amplitude of 
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the first peak was determined by averaging the section of the waveform before the 

response began (0-1.5 ms after the stimulus was played) and subtracting this average 

from the peak (peak to baseline measurement).   

 

Figure 2.4. Amplitude and latency measurements on a lesser scaup ABR. Amplitude 
of the first peak was measured as peak to baseline. Latency of the first peak was 
corrected for the delay between the speaker and the bird’s ear.  
 

Threshold Estimation 

Threshold was defined using two methods: visual detection and linear 

regression. In the visual detection technique, the first 10ms of all ABR waveforms 

was examined visually by observers (who had no prior experience analyzing ABR 

data) for a response. These observers were trained to identify threshold as the level 

one half step below the lowest stimulus level at which a response could be visually 

detected on the trace (as in Brittan-Powell & Dooling, 2004; Brittan-Powell et al., 

2005, 2010; Lohr et al., 2013). To test if the observers varied in their analysis, 40 files 
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were chosen at random and analyzed by both observers. A paired t-test was conducted 

to look for significant differences in thresholds across observers.  

Thresholds were also estimated using linear regression analysis on lesser 

scaup data. The amplitude of the first positive peak was obtained across all frequency 

and stimulus levels and an amplitude-intensity function was generated. Threshold was 

defined as the 0 µV crossing of a line produced with linear regression. Techniques for 

estimating thresholds (visual detection vs. linear regression) within one species (six 

female lesser scaup) were evaluated, using repeated measures ANOVA. 

To compare measures across species and frequencies, repeated-measures two-

way analysis of variances (ANOVAs) were conducted. Differences between sexes 

were not tested due to limited power to detect differences from small sample sizes 

within sexes for each species. 

 To investigate the relationship between body mass and best frequency of 

hearing, the audiogram points for each species were used to calculate a best-fit third-

order polynomial in 100-Hz frequency steps for the range of frequencies tested (as in 

Gleich et al., 2005). The frequency of best hearing (i.e., the frequency with the lowest 

threshold) and the high-frequency limit of hearing (defined as the point on the high-

frequency side of the audiogram where the threshold rises to >30 dB above the lowest 

threshold) were determined from these functions. Linear regression was used to 

investigate relationships between body mass, frequency of best hearing, and high-

frequency limit of hearing. 

Anesthesia Comparisons 
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 Isoflurane was chosen as the anesthetic for these experiments because of its 

reputation of reliability and safety in waterfowl (Machin, 2004; Carpenter, 2013).  

Experiments on four additional lesser scaup were conducted to compare ABR results 

between two types of anesthesia,: isoflurane vs. a combination of ketamine and 

midazolam (Machin & Caulkett, 1998; Carpenter, 2013). Each duck received both 

treatments, with order of anesthetic determined by a randomized schedule and with a 

minimum of two weeks between treatments for a washout period (time for the 

anesthetic to be eliminated from the animal’s system). All equipment and stimulus 

procedures were as previously described except for ketamine/midazolam delivery, 

which required a single intramuscular injection of ketamine (40 mg/kg) and 

midazolam (2 mg/kg) to produce a sufficient level of anesthesia similar to the 

isoflurane for a period (usually 20-30 min) long enough to complete the ABR trial.  

Vocalization Analysis 

Vocalizations from eight of the ten species were obtained from Cornell 

University’s Macaulay Library collection. It was not possible to obtain vocalizations 

from surf scoters or white-winged scoters (neither of which are very vocal (personal 

observation)). Spectrographic analysis of minimum, maximum, and peak frequency 

(the frequency of the greatest power) was performed on ten individual calls of each 

species using Raven Lite 1.0 (Cornell Lab of Ornithology; Ithaca, New York). These 

values were then compared to the most sensitive hearing frequency, which was 

calculated as described above for the body mass analysis.  
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RESULTS 
	
  

All species tested showed at least two prominent ABR peaks within 4-5 ms 

after the stimulus reached the bird’s ear canal. Waveform morphology was very 

similar across all eight duck species tested (Figure 2.5A), with a different pattern of 

peaks in the two non-duck species, the red-throated loon and northern gannet (Figure 

2.5B). These peak patterns were stable across frequencies and intensity levels. As the 

level of stimulation increased, ABR amplitudes increased and peak latencies 

decreased (Figure 2.6).  

Figure 2.5. Waveform morphology examples from three duck species (A) and two 
non-duck seabirds (B). All waveforms are responses to 90 dB tone pips at 2860 Hz, 
the frequency at which the highest amplitude responses were recorded for most 
species. The stimulus was presented at time=0. 
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Figure 2.6. The latency (top) and amplitude (bottom) of the first peak as a function of 
increasing stimulus level at 2860 Hz, the frequency at which the highest amplitude 
responses were recorded for most species. Latencies are corrected for the delay from 
the speaker to the bird’s ear canal. Vertical bars represent +/- one standard deviation. 
 

The measured audiograms for all birds were U-shaped (Figure 2.7). 

Sensitivity peaked between 1000-3000 Hz, with a steep high-frequency roll-off after 

4000 Hz.  A two-way repeated measures ANOVA found significant effects of 

frequency (F(5,225) = 114.4, p < 0.0001), species (F(7,45) = 7.281, p <0.0001) and 

frequency by species interaction (F(35,225) = 2.165, P = 0.0004). There were 

differences in average audiograms across species (Figure 2.7) with an apparent 
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segregation occurring between waterfowl species and non-waterfowl species. The 

highest thresholds were found in the northern gannet and red-throated loon and the 

lowest to the lesser scaup and ruddy duck (Figure 2.8).  At the lower frequencies the 

harlequin duck, common eider, and white-winged scoter exhibited similar thresholds 

as the two non-waterfowl species, the red-throated loon and northern gannet.  

However, as the frequencies increased, all three species diverged away from the non-

waterfowl species and resembled more closely the other waterfowl species thresholds.  

Within the waterfowl species, the common eider showed the highest thresholds across 

all frequencies closely followed by the harlequin duck and the white-winged scoter.  

At the highest frequency, all species except the lesser scaup converged to a similar 

threshold around 80 dB re 20 µPa. 

Threshold estimates for six female lesser scaup did not differ between the 

visual inspection method and the linear regression method across frequencies (F(1,8) = 

2.524, p = 0.15; Figure 2.9). Thresholds also did not differ significantly between 

visual observers (t=1.38, df = 39, p = 0.18). The amplitude and latency of clicks from 

the 28 captive birds tested did not differ from the beginning to the end of a testing 

session (amplitude: t = 0.4786, df = 27, p = 0.6361; latency: t = 1.980, df = 27, p = 

0.0616).  
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Figure 2.7. Average ABR audiograms from all species tested. Vertical bars represent 
+/- one standard deviation. 
 

 

Figure 2.8. Average ABR audiograms from the species with the highest average 
thresholds (northern gannet) and the lowest average thresholds (lesser scaup). 
Vertical bars represent +/- one standard deviation. 
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Figure 2.9. Audiograms derived from the two methods of analysis: the visual 
inspection method, and the linear regression method. Vertical bars represent +/- one 
standard deviation. 
 

Regression analysis showed there was an inverse relationship between body 

mass and frequency of best hearing (Figure 2.10, top panel). Nevertheless, the slope 

of the line is not significantly different from zero and the low r2  value indicates a high 

level of variance across points (y=-0.2288x+2468, r2=0.1704, p=0.2357). There was 

an apparent linear increase in best frequency of hearing as a function of high-

frequency hearing limit, but the trend was not significant at the 5% level (bottom 

panel of Figure 2.10; y=0.5987x+3880, r2=0.3600, p=0.1544). 
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Figure 2.10. Top: No significant difference was found for frequency of best hearing 
as a function of body mass for ten species based on linear regression analysis  
(y=-0.2288x+2468, r2=0.1704, p=0.2357). Bottom: The high frequency limit of 
hearing as a function of the frequency of best hearing for ten species was not 
significantly different using linear regression analysis as well (y=0.5987x+3880, 
r2=0.3600, p=0.1544). 
 

Anesthesia Analysis 

ABR thresholds were compared across two types of anesthesia: the inhalant 

isoflurane and injectable ketamine/midazolam combination. Four individual lesser 
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However, the ketamine/midazolam recovery time was much longer (approximately 

four hours) than that for isoflurane (less than one hour). 

Vocalization Analysis 

Ten individual calls from Cornell University’s Macaulay Library were 

measured for eight species (Table 2.2). Samples from two call types for the red-

throated loon (the “quark” and the “cry”) and from both male and female lesser scaup 

were analyzed. All other listed species are male calls. All species had average peak 

frequencies between 1000 and 3000 Hz, with the exception of the common eider at 

443 Hz (Table 2.2). Maximum frequency ranged from 1053 Hz (common eider) to 

18865 Hz (northern gannet).  

 
Table 2.2. Average peak frequency of vocalizations (frequency at greatest power), 
maximum frequency of vocalizations, and best hearing frequency for each species.  
Species Peak Frequency 

(Hz) 
Max Frequency (Hz) Best Hearing 

Frequency  
(Hz) (n) 

Common eider 
 

443 1053 2400 (10) 

Red-throated loon 
Quark 

1528 3439 1900 (6) 

Red-throated loon 
Cry 

1983 7857 1900 

Black scoter 
 

1714 2012 1900 (3) 

Long-tailed duck 
 

1723 12007 2100 (7) 

Lesser scaup Male 
 

1779 2850 3000 (only 
females tested) 

Lesser scaup Female 
 

2736 7594 3000 (6) 

Northern gannet 
 

2173 18865 1700 (7) 

Harlequin duck 
 

2346 3947 2100 (7) 
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DISCUSSION 
	
  

The morphology of the ABR waveforms was very similar across all eight 

duck species tested. These duck ABR waveforms were similar to those exhibited by 

other birds tested with the ABR technique, such as budgerigars, screech owls, 

Carolina chickadees (Poecile carolinensis), red-winged blackbirds and brown-headed 

cowbirds (Molothrus ater) (Brittan-Powell et al., 2002, 2005; Henry & Lucas, 2010; 

Gall et al., 2011). The pattern of evoked peaks differed in the two non-duck species 

(red-throated loons and northern gannets), but still exhibited at least two prominent 

peaks within 5 ms of stimulus onset.  

Other measured characteristics of the ABR responses of all birds measured 

here also resembled those of other birds and mammals. Specifically, the latency of the 

first peak increased and the amplitude decreased with decreasing stimulus level, 

typical of other ABR studies (gerbil, Meriones unguiculatus, Burkard & Voigt, 1989; 

budgerigars, Brittan-Powell et al. 2002; screech owls, Brittan-Powell et al., 2005; 

Belgian waterslager canaries, Serinus canaria domestica, Brittan-Powell et al., 2010; 

Lohr et al., 2013). 

ABR audiograms obtained for each species tested here conformed to the U-

shape typical of birds and many other animals.  All species tested shared a common 

region of greatest sensitivity, from 1000 to 3000 Hz, although the audiograms 

differed significantly across species and frequencies. The significant impact of 

frequency across the audiogram was expected because of its U-shape, but the species 

differences are not as easily explained. Species differences in hearing thresholds 

could be impacted by many factors that are complicated to explore, such as 
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anatomical differences associated with phylogenetic history and/or specific 

adaptations in skull shape. The thresholds of all duck species tested were more similar 

to each other than to the two non-duck species tested. The red-throated loon and 

northern gannet exhibited the highest thresholds, while the lowest thresholds 

belonged to the ducks, specifically the lesser scaup and ruddy duck.   

The northern gannet is the only species of plunge-diver tested here, and has 

unique adaptations to compensate for hitting the water at speeds up to 100 mph. CT 

scans done in conjunction with this project at Woods Hole Oceanographic Institution 

showed extra air spaces in the gannet head and neck to cushion its impact, and these 

air spaces could affect the ability to observe already small responses from the 

auditory brainstem (D. Ketten, personal communication, 2012). The tympanic 

membrane appeared very stiff in the CT scans as compared to the tympanic 

membrane of the swan, a similar sized bird (D. Ketten, personal communication, 

2012). This thickening could be a protective mechanism for plunging and could 

potentially explain the higher thresholds in gannets that were measured in this study. 

However, CT scans were only completed with one gannet, so these observations may 

not be representative of the species.  

Gannets may also have the ability to close off its auditory meatus to further 

streamline the body and avoid the introduction of water into its ear (D. Ketten, 

personal communication, 2012). Induction of anesthesia, especially when using a 

mask, can cause diving birds to go into a dive response, when their respiratory rate 

and heart rate decrease (Machin, 2004). Any other adaptations to diving, including 

the closing of the meatus to the external environment, could also occur and affect the 
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ABR.  Masks were, however, only used to induce the isoflurane anesthesia. Once a 

sufficient level of anesthesia was reached, all test birds were intubated and isoflurane 

delivered through the endotracheal tube. Thus, it is unlikely that diving responses 

were triggered or present during the actual ABR testing. 

The region of peak energy in animal vocalizations is often correlated with the 

frequency of best sensitivity and/or the bandwidth of the best hearing range (e.g. bats 

– Long & Schnitzler, 1975; Neuweiler et al., 1980; birds – Konishi, 1970; Dooling et 

al., 1971; Dooling & Saunders, 1975; Dooling et al., 2000; elephants – Heffner & 

Heffner, 1982; Payne et al., 1986; frogs – Megela-Simmons et al., 1985). 

Vocalizations of most of the species tested range from frequency-modulated whistles 

(black scoters), to purrs and whee-oos (lesser scaup), to loud yodel-like calls (long-

tailed duck), to constant chirps (harlequin ducks), to wails (red-throated loons), and to 

generally silent (white-winged scoter) (Brown & Fredrickson, 1997; Austin et al., 

1998; Savard et al., 1998; Robertson & Goudie, 1999; Barr et al., 2000; Goudie et al., 

2000; Brua, 2002; Robertson & Savard, 2002; Bordage & Savard, 2011). With the 

exception of the common eider, the peak frequency (frequency at the greatest 

intensity) of all species’ vocalizations measured here fell between 1000 and 3000 Hz, 

matching the bandwidth of the most sensitive hearing range. There are some 

exceptions; the peak frequency of the common eider vocalization (443 Hz) did not 

match the calculated best hearing sensitivity (2400 Hz). Common eider hearing may 

be adapted to hear higher-frequency duckling vocalizations, or the mismatch could be 

a product of environmental conditions or social behavior.  



	
   68	
  

 Common eiders and northern gannets are the only colonial nesting species 

tested in this study. Northern gannets have only six colonies in North America, with 

the largest, on Bonaventure Island, Quebec, containing more than 73,000 individuals 

(G. Chapdelaine, unpubl.; Mowbray, 2002). Common eiders commonly nest in 

densities reaching 100-400 nests/ha (Chapdelaine et al., 1986). In addition, common 

eiders frequently form dense flocks of up to tens-of-thousands of individuals in the 

non-breeding season, in response to clumped food resources and possibly heat 

conservation (Guillemette et al., 1993). Dense, noisy aggregations may favor short-

range, more complex auditory cues used for individual recognition amongst 

thousands of individuals (such as in colonial penguin and auk species – Beecher, 

1981; Jouventin, 1982; Jones et al., 1989; Aubin et al., 2000; Lengagne et al., 2000). 

Like these other colonial seabirds, gannet vocalizations have individually distinctive 

amplitude envelopes and birds respond preferentially to playbacks of their mate’s 

vocalizations (Nelson, 1978; Mowbray, 2002). The comparatively poor hearing 

sensitivity of the northern gannet (least sensitive of all species tested) and common 

eider (least sensitive of all the ducks) may, therefore, reflect the colonial habitat of 

these species.  

The most sensitive hearing of all species tested belonged to the lesser scaup 

and ruddy duck. In the case of these species, ambient noise levels in the environment 

may have shaped hearing sensitivity. Of all species tested, ruddy ducks and lesser 

scaup spend the most time on inland, freshwater environments (Austin et al., 1998; 

Brua, 2002).  Ambient noise levels in stagnant freshwater habitats tend to be 

consistently lower than in coastal and marine habitats, which are dominated by wind 



	
   69	
  

and wave action (Wenz, 1962; Bom, 1969; Urick, 1983; Nystuen, 1986; McConnell 

et al., 1992; Greene, 1995).  There is some evidence that exceptional hearing 

sensitivity in fishes, such as in the otophysines (carps and minnows, catfishes, 

characins, knifefishes), may have evolved in quiet freshwater or deep sea habitats 

(Popper, 1980; Deng et al., 2002, Ladich & Bass, 2003; Amoser & Ladich, 2005). It 

is possible that sensitive hearing in the ruddy duck and lesser scaup is associated with 

quiet freshwater habitats, as opposed to the wind- and wave-swept environments 

occupied by the other birds studied.  

Because all birds were tested using the same procedures, species differences 

in hearing sensitivity were not a result of procedural differences. However, it is 

possible that species or individuals could vary in their response to the anesthesia. 

Isoflurane, which was used for all birds in this study, has been shown to elevate 

thresholds compared to a ketamine/xylazine combination in rats and mice, with a 

reduction in sensitivity over the duration of anesthesia (Cederholm et al., 2012; 

Ruebhausen et al., 2012). Prolonged isoflurane anesthesia (8 hours) was also 

associated with elevated auditory thresholds in the American alligator (Carr et al., 

2009). 

 Isoflurane was chosen, because of its history of effectiveness and safety in 

waterfowl (Machin, 2004; Carpenter, 2013). While efforts were made to keep the 

anesthesia level and duration consistent across species (the lowest level possible that 

would maintain the bird immobile), it is possible that each species could react 

differently to the anesthesia, or that the waterfowl species could react differently from 

the non-waterfowl species. In order to determine if thresholds were elevated by the 



	
   70	
  

choice of isofluorane, we carried out additional testing on anesthesia type (isoflurane 

vs. a ketamine/midazolam combination) on a subset of lesser scaup. This was the first 

comparison of the effects of anesthetic on the ABR in birds, and demonstrated that at 

least within one species, thresholds did not differ depending on anesthesia type.  

However, recovery time for the ketamine/midazolam combination was much longer 

than for isoflurane, illustrating isoflurane’s utility for wild birds that have to be 

released within a short amount of time.  

 In addition, the season in which the birds were tested, along with the resulting 

levels of sex hormones, could affect hearing thresholds. Caras et al. (2010) simulated 

natural breeding or non-breeding conditions by manipulating hormone levels and 

photoperiod in Gambel’s white-crowned sparrows (Zonotrichia leucophrys gambelii), 

and observed shifts in auditory thresholds, but no significant differences between 

males and females. During simulated breeding conditions, ABR thresholds were 

elevated and peak latencies were prolonged compared to non-breeding conditions. 

While each species was tested within one season (usually within two weeks), the 

seasons across testing all of the species varied, providing another possible 

complication for interpreting species differences.   

 In birds, body mass and basilar papilla lengths are inversely correlated with 

the most sensitive frequency in a species (Gleich et al. 2005; Corfield et al., 2013). 

Avian species with a long basilar papilla have the most sensitive frequency of hearing 

at higher frequencies than do species with a short basilar papilla. The high-frequency 

limit of hearing is positively correlated with the frequency of best hearing. These 
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relationships were not significant with our data, possibly because the body mass 

differences across species tested here varied by less than 2500g.   

 The aquatic bird audiograms obtained, as estimated by the ABR, shared many 

similarities with other birds tested previously, and also showed considerable variation 

across species tested. Because there is so little known about the biology and behavior 

of these species, it would be useful to explore anatomical, behavioral, and 

evolutionary correlations with these species differences in hearing. Future directions 

should further investigate the characteristics and use of vocalizations as well as ear 

anatomy differences across species. 
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Chapter 3: In-Air Hearing of a Diving Duck, the Lesser Scaup: 
A Comparison of Psychoacoustics and the Auditory Brainstem 
Response 

INTRODUCTION 

The accurate measurement of auditory sensitivity in animals is an important 

addition to the body of knowledge of a species for which which little information 

concerning sensory biology is available. Furthermore, non-invasive techniques to 

measure hearing in animals are valuable tools to learn about species that are not 

typical laboratory animals. When the opportunity arises to study a species in captivity, 

it is useful to compare techniques to validate non-invasive methods against standard 

laboratory techniques. Therefore, the aim of this study was to carry out comparisons 

of an electrophysiological technique that might be utilized in the field, such as the 

auditory brainstem response (ABR), with psychoacoustic methods that have been 

more established as the “gold-standard” of laboratory research (Fay, 1988). For this 

purpose, the lesser scaup  (Aythya affinis), a species of diving duck that is not 

commonly kept in captivity, was used.  

 Psychoacoustic methods involve training an animal to respond to test stimuli 

with a particular behavior, such as pressing a lever or pecking a key (e.g. Dooling & 

Okanoya, 1995; Kastak & Schusterman, 1998; Syzmanksi et al., 1999; Wolski et al., 

2003). In contrast, the ABR is an auditory evoked potential, recorded from the scalp, 

occurring within the first 10 ms following auditory stimulation (Hall, 1992). The 

recorded series of waves represents synchronized neural discharge during the 

progressive propagation of auditory neural activity through the ascending auditory 

pathway (Hall, 1992). The ABR provides a rapid estimate of the shape of the 
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audiogram and range of hearing sensitivity, but thresholds are often 10-15 dB higher 

than when using behavioral methods (Borg, 1982; Borg & Engström, 1983; Gorga et 

al., 1988; Brittan-Powell et al., 2002; Wolski et al., 2003; Yuen et al., 2005; Houser 

& Finneran, 2006; Henry & Lucas, 2008). These elevated thresholds in the ABR can 

be attributed to differences in stimulus characteristics and measurement techniques 

between behavioral and electrophysiological methods (Silman & Silverman, 1991; 

Hall, 1992; Szymanski et al., 1999; Brittan-Powell et al., 2002; Schlundt et al, 2007; 

Ladich & Fay, 2013; Sisneros et al., 2015). The major advantages of the ABR are that 

an entire audiogram can often be constructed after one session of less than 60 min, 

and that there is no animal training involved (it can be used on temporarily-caught 

wild animals).  

  Previous studies on lesser scaup and other diving ducks have focused mainly 

on foraging and reproductive ecology (e.g. Afton & Ankney, 1991; Cutting et al., 

2011; Brady et al., 2013; Warren et al., 2014). They are capable of diving to depths of 

at least 15-18 m, for 2-25 seconds at a time, to forage primarily on mollusks, 

crustaceans, and aquatic insects (Austin et al., 1998). Both males and females 

vocalize throughout the year to signal to mates and offspring (Johnsgard, 1965). The 

lesser scaup is one of the most abundant and widespread species of diving duck in 

North America, and prefers freshwater, but will winter on brackish bodies of water. 

Its numbers have been declining in recent years for unknown reasons (Austin et al., 

1998). Studies on the sensory biology of this species could elucidate unknown 

foraging strategies, communication behavior, and habitat selection, and become an 
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important resource in creating an appropriate management strategy if the population 

continues to decline.   

 In addition, data on the auditory sensitivity of the lesser scaup will add to 

current literature on comparative avian hearing. Of the approximately 10,000 extant 

species of birds, hearing has only been measured in about 50 species (Dooling, 2000, 

2003).  Approximately half of all birds for which there are hearing data are from the 

order Passeriformes (perching birds – includes the songbirds), as well as 13 species of 

owl and several other non-passerine, non-aquatic birds (Dooling, 2000, 2003). There 

are few data on aquatic birds, such as the lesser scaup. Adaptations for living in an 

aquatic environment may be related to auditory sensitivity. 

 The goal of this study was to investigate the auditory sensitivity of the lesser 

scaup in order to contribute both to the biological knowledge of a species in decline 

and the overall comparative avian audition literature. Objectives included: 1) use 

psychoacoustics to obtain absolute auditory thresholds, 2) compare these 

psychoacoustic results to lesser scaup ABR data from chapter 1, 3) investigate 

correlations between auditory sensitivity and vocalization parameters, and 4) measure 

critical ratios.  

The critical ratio, or the lowest signal-to-noise ratio at which a tone is detected 

in broadband masking noise, is calculated as the difference between the masked 

hearing threshold and the spectral level of the masking noise (Fletcher, 1940; Scharf, 

1970). Critical ratios have been used to estimate the frequency selectivity of the 

auditory system in a variety of animals, including several bird species (Dooling & 

Saunders, 1975; Lauer et al., 2009; Noirot et al., 2011). Critical ratios also provide a 
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method to verify that ambient noise levels in an experimental setup are not masking 

absolute thresholds, which is what the data were used for in the present study.  

METHODS 
	
  

The Institutional Animal Care and Use Committees at both the University of 

Maryland and U.S. Geological Survey Patuxent Wildlife Research Center (where the 

birds were housed and tested) approved all of the following procedures.  

Psychoacoustics 

	
  
Subjects 

Three adult lesser scaup, one male and two female, were used for this study.  

The three birds were hatched in an incubator in June 2010 and raised together at the 

U.S. Geological Survey Patuxent Wildlife Research Center’s seabird colony. Testing 

began when the birds were one year old. Thresholds were measured in both quiet and 

noise (used to calculate critical ratios) for all subjects.   

Equipment 

 Ducks were tested in concrete tanks (2.5 m deep) at the U.S. Geological 

Survey Patuxent Wildlife Research Center’s seabird colony. The testing apparatus 

consisted of an observation target, report target, automatic mealworm dispenser, and 

speakers, all at the surface of the water (Figure 3.1). Both targets and mealworm 

dispenser were made of PVC pipe. Each target was equipped with a light emitting 

diode (LED) and a pressure-sensitive piezo disk that allowed the computer to record 

the bird’s pecking responses. The observation target was lit with a blue LED, 

signaling to the duck that they can begin a trial. The response target, used by the duck 
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to indicate the presence of a test signal, was lit with a white LED. The speaker 

(Frequency response: 90Hz – 20 kHz; Dynex DX-SP211; Richfield, MN) was 

mounted on the wall of the tank, approximately 30.5 cm in front of the duck when 

pecking at the observation target. All experimental events were coordinated by a 

custom computer system (SEABIRD – Sensory Equipment for Animal Behavior and 

Integrated Research Data; developed by R. Therrien, U.S. Geological Survey 

Patuxent Wildlife Research Center), powered by a 12V battery. Tones were generated 

as .wav files using Audacity (opensource) software with a 48k sampling rate. These 

tones were then stored on an SD card, which was inserted into the SEABIRD 

hardware. A computer-controlled logarithmic potentiometer attenuated the tones, 

which were then amplified with a Pyle PLMRMP1A (Brooklyn, NY) before output to 

speaker. The system was controlled by the user through a touch-screen interface on an 

Apple iPad (Cupertino, CA).  

Calibration of all frequencies and attenuation levels was conducted using a 

calibrated Earthworks M30 microphone (Milford, NH) at the location where the 

bird’s ear would be, connected to the iPad with an Alesis iO ProAudio Dock 

(Cumberland, RI). The iPad was running SignalScope Pro software (Faber 

Acoustical; Santaquin, UT), which has an FFT analyzer function to perform real-time 

spectral analysis in 1 Hz spectral levels. The system was calibrated with a CEM SC-

05 sound level calibrator (Shenzhen, China). In addition, a daily calibration was 

performed, during which a 60 dB tone was played across all frequencies, measured by 

a BK Precision 732A sound level meter (Yorba Linda, CA), which fed back into the 

SEABIRD hardware to provide voltage adjustments. Daily variation in decibel levels 



	
   77	
  

before calibration was +/- 3 dB.  

Ambient noise in the experimental set up was also measured using the 

Earthworks M30 microphone connected to the iPad. Ambient spectral levels were 

visualized using SignalScope Pro on the iPad. 

  

 

 

Figure 3.1. Left: Experimental set-up for in-air hearing test, including two targets and 
a mealworm feeder, all made of PVC. Right: Lesser scaup in training session pecking 
at a target. 
 
Training and Testing Procedures 

 An individual duck was transferred to the tank from its outdoor pen before 

trials began. Ducks were trained using operant conditioning procedures on a go/no-go 

task.  Each duck was trained until reliably performing above 90% accuracy, at which 

time testing commenced.  

At the beginning of a trial, both the observation and target were illuminated. 

To begin a trial, a duck pecked the lit observation target. Each time the bird pecked 

the observation target, the computer generated a random number from 1-10. When the 
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peck random number was from 7-10, the trial would go to completion, either with the 

playback of a tone or a sham trial, and the target lights would shut off. If the peck to 

the observation target generated a number from 1-6, the lights would stay on and the 

trial would continue, waiting for further pecks. If a tone was played, the duck had to 

peck the report target within four seconds. If the duck pecked the report target 

correctly (hit), a variable number of mealworms were delivered as a reward and the 

target lights shut off for a random interval of 15s +/- 5s. If a tone was played and the 

duck failed to report (miss), no mealworm was delivered and the trial ended with the 

target lights shut off. If no tone was delivered (sham trial), the duck was to refrain 

from hitting the report target until the target lights shut off (correct rejection). The 

bird’s rate of response during sham trials was used to calculate the false alarm rate. If 

the duck pecked the report target in the absence of a tone (false alarm), the target 

lights shut off and the duck received a 10-second “punishment” period when the 

lights in the building were shut off.   

At the beginning of each testing session, the bird was trained with 5-10 warm-

up trials, during which the bird was presented with a pre-selected stimulus level well 

above threshold. This regular training allowed the bird a daily adjustment period to 

the task. Birds were tested once per day, and were allowed to test until they lost 

interest, signified by five minutes passing without pecking the observation target.  

Sessions of less than twenty trials were discarded. To measure critical ratios, all 

testing procedures were the same, except with the addition of the broadband noise 

described below.  
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Stimuli 

 Stimuli consisted of two pure tone 1000-ms sinusoidal pulses separated by 

500 ms, with a 250-ms rise time, a 500-ms steady state peak, and a 250-ms fall time. 

Hearing sensitivity was measured for frequencies of 0.5, 1.0, 2.0, 2.86, 4.0, 5.7, and 

8.0 kHz. The signal frequency was held constant for each session. The order of 

frequencies tested was random, but was the same across birds. Each block consisted 

of ten trials – seven intensity levels and three sham trials. The seven intensity levels 

were pre-selected in steps of 10 dB. These levels were adjusted until one stimulus 

intensity was below threshold, the next was near threshold, and the remaining five 

were above threshold. During each block, the seven intensity levels and three sham 

trials were presented in random order.  

 For critical ratio trials, masking noise was played continuously throughout the 

session. White noise was also generated using Audacity software, digitally filtered to 

be flat (+/- 5dB) between 0.5 and 8.0 kHz (also using Audacity), and integrated into 

the hardware system with a Behringer MicroMix MX400 (Bothell, WA). The noise 

was played at two levels (20 dB/Hz and 30 dB/Hz or 55 dB and 65 dB overall), for 

each frequency tested. Spectral levels were calibrated using the same 

microphone/iPad system described above for tone calibration. Masked thresholds 

were measured at 1.0 kHz and 2.86 kHz.  

Threshold Estimation 

The ten-trial blocks were added together across consecutive days until the bird 

completed 100 trials.  Threshold was estimated after each of these 100-trial sets. The 

birds were tested repeatedly at each frequency until threshold values across these 100-
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trial sets showed no further improvement (the threshold was within +/- 1/3 of the step 

size for three sets of 100 consecutive trials). The final threshold estimate was then 

defined as the mean threshold estimate from the last 200 trials, at an SPL 

corresponding to a 50% correct detection rate.  False alarm rate was also calculated 

for each set of 100 trials. One-hundred-trial sets with false alarm rates higher than 

15% were discarded.  

Threshold was also defined according to Signal Detection Theory, to account 

for each bird’s individual false alarm rate. The discriminability index d' was 

calculated at all frequencies for each bird with its false alarm rate and a 50% hit rate. 

In addition, new hit rates were calculated using each bird’s false alarm rate and a d' of 

1.0, 1.5 and 2.0. The SPL corresponding to these new hit rates at each frequency were 

then calculated for a new measurement of threshold. Critical ratios were calculated by 

subtracting the spectrum level of the noise from the masked threshold. 

Vocalization Analysis 

Adult male and female lesser scaup vocalizations were obtained from Cornell 

University’s Macaulay Library collection. Lesser scaup duckling vocalizations were 

recorded at Patuxent Wildlife Research Center (Sound Devices 702 portable recorder, 

Reedsburg, WI). Spectrographic analysis of minimum, maximum, and peak 

frequency (the frequency of the greatest power) was performed using Raven Lite 1.0 

(Cornell Lab of Ornithology; Ithaca, NY). These measurements were then compared 

to the most sensitive hearing frequency and high-frequency limit of hearing. Hearing 

sensitivity was calculated in 100 Hz steps for the range of frequencies tested by fitting 

the raw audiogram data points to a third-order polynomial (Gleich et al., 2005). The 
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frequency of best hearing was then defined as the lowest 100 Hz point on this curve. 

The high-frequency limit of hearing was defined as the point on this curve where 

threshold rises >30 dB above the lowest threshold.  

Auditory Brainstem Response 

Subjects 

 The subjects for this portion of the study were of the same species, but 

different individuals, as those tested in the psychoacoustic portion. Although it would 

be valuable to test the same individuals using both methods, the risk of putting the 

trained psychoacoustics birds under anesthesia to measure the ABR outweighed the 

benefits to the study. ABR subjects were six adult lesser scaup, raised from eggs at 

U.S. Geological Survey Patuxent Wildlife Research Center.  

Experimental Procedures 

Experimental procedures were described in detail in chapter 1. All birds were 

sedated with isoflurane (2-4%; the lowest possible percentage was used to prevent 

movement in the bird) prior to electrode placement. The bird was positioned so that 

the speaker was 20 cm from the bird’s right ear. Electrodes were placed subdermally 

high on the bird’s forehead (active), directly behind the right ear canal (the ear 

ipsilateral to the speaker, reference), and behind the canal of the ear contralateral to 

stimulation (ground).   

Subjects were presented with tone burst stimuli 5 ms in duration with a 1 ms 

rise/fall and a 20 ms interstimulus interval, at frequencies between 0.5 and 5.7 kHz. 

The stimuli were presented in trains consisting of nine single frequency tone bursts 
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that increased successively in intensity and were presented at a rate of 4/s (see chapter 

1 and Brittan-Powell et al., 2002, 2005, 2010).  

The stimulus presentation and ABR acquisition were coordinated using 

Tucker-Davis Technologies (Gainesville, FL, USA) hardware and OpenABR 

software (Dr. Edward Smith, University of Maryland). Stimulus intensities were 

calibrated in the free field by placing a 1/4 microphone (Earthworks M30-Calibrated) 

at the approximate position of the animal’s ear (20 cm from the speaker). 

Latency and Amplitude: 

 The amplitude and latency of the first peak was measured for all frequencies 

and intensities tested. The latency was corrected for the delay between the speaker 

and the bird’s ear (0.59 ms). The amplitude of the first peak was determined by 

subtracting the average voltage from the section of the waveform before the response 

began from the peak (peak to baseline measurement).   

Threshold Estimation 

Threshold was defined using two methods: visual detection and linear 

regression. In the visual detection technique, the first 10 ms of all ABR waveforms 

were examined visually by a trained observer for a response. Threshold was defined 

as the level one half step below the lowest stimulus level at which a response could be 

visually detected on the trace (see Brittan-Powell & Dooling, 2004; Brittan-Powell et 

al., 2005, 2010; Lohr et al., 2013). Thresholds were also estimated using linear 

regression, as described in chapter 1: The amplitude of the first positive peak was 

obtained across all frequency and stimulus levels and an amplitude-intensity function 
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was generated. Threshold was defined as the 0 µV crossing of a line produced with 

linear regression.  

RESULTS 

Psychoacoustics 

Audiogram 

Using psychoacoustics, three lesser scaup (identified by colored leg bands as 

Pink, Yellow, and Blue) were tested at frequencies from 0.5 Hz to 8.0 kHz. Less than 

10% of sessions for each bird were discarded because of a false alarm rate higher than 

15% (0% for Pink bird, 3% for Yellow bird, and 8.8% for Blue bird). Psychometric 

functions for all three birds at 1.0 kHz are shown in Figure 3.2. In this example, at 

least one stimulus level was well below threshold, one level was slightly above 

threshold, and four stimulus levels were well above threshold, and responded to close 

to 100% of the time. Each symbol on the figure represents an average percent correct 

for the last twenty trials tested at 1.0 kHz. Threshold corresponded to a hit rate of 

50%, which was equal to 27.5 dB re 20 µPa for Pink bird, 23.7 dB re 20 µPa for 

Yellow bird, and 24.5 dB re 20 µPa for Blue bird.  
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Figure 3.2. Psychometric functions for three lesser scaup (identified by colored leg 
bands) at 1.0 kHz. Each symbol represents twenty trials.  
 

All three birds tested displayed best sensitivity at 2.86 kHz, with an average 

threshold of 14.4 dB, corresponding to a hit rate of 50%. The high-frequency roll-off 

above 4 kHz was much steeper than the low frequency roll-off. Audiograms for all 

birds are shown in Figure 3.3. Figure 3.4 depicts the average scaup audiogram along 

with the spectrum level of the ambient background noise in the building.  
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Figure 3.3. Audiograms for all three birds tested, corresponding to a hit rate of 50%.  

 

Figure 3.4. Average scaup audiogram with background noise (plotted in spectrum 
levels) in the dive tank building. Spectrum levels were measured using SignalScope 
Pro software on an iPad. Vertical lines represent +/- 1 standard deviation.  
 

Signal Detection Theory was used to account for each bird’s individual 

response bias. Across all frequencies, the 50% performance level corresponded to a d' 

of 1.91 for Pink bird, 1.48 for Yellow bird, and 1.25 for Blue bird. Threshold at each 
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frequency was also calculated for each bird performing at three d' levels: 1.0, 1.5, and 

2.0. To do this, a new hit rate at each frequency was calculated to correspond to the 

bird’s false alarm rate and each level of d'. This new hit rate was then used to define a 

new threshold level.  Figure 3.5 displays the average audiogram (using a hit rate of 

50%) from all three birds along with the new audiograms estimated using d' of 1.0, 

1.5, and 2.0. From this figure, it is apparent that defining threshold using a 50% hit 

rate corresponds most closely to a d' of 1.5. 

 

Figure 3.5.  Audiograms from three lesser scaup. The solid line represents thresholds 
defined using a hit rate of 50%, and the dotted lines represent hit rates calculated 
using a d' of 1.0, 1.5, and 2.0.  
 
Critical Ratios 

Critical ratios were measured at 1.0 kHz and 2.86 kHz.  The frequency of test 

tone, spectrum level of the masking noise, the average masked threshold, and the 

average critical ratio are reported in Table 3.1. Masked thresholds increased in 

proportion to noise spectrum level, while critical ratios remained relatively constant.  
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Table 3.1. Frequency of test tone, masking noise level, masked threshold and 
calculated critical ratio averaged across all lesser scaup.  
 
Frequency (Hz) Masking Noise 

Level (dB re 20 
µPa/Hz) 

Masked 
Threshold (dB re 
20 µPa) 

Critical Ratio 
(dB) + [SD] 

1000 20 41.5 21.5 [1.83] 

1000 30 54.5 24.5 [2.0] 

2860 20 41.9 21.9 [1.66] 

2860 30 52.9 22.9 [2.12] 

 

Vocalization Analysis 

Recorded vocalizations from lesser scaup ducklings and adult males and 

females were analyzed for several measurements (Table 3.2). Because of limitations 

on sample sizes, males and females were lumped together for hearing measurements, 

and therefore the frequency of best hearing and high-frequency limit of hearing were 

calculated across both sexes. Hearing tests were not conducted on ducklings. Adult 

female vocalizations were more broadband in nature, spanning a wider range of 

frequencies, and with a higher peak frequency, than the adult male vocalizations. The 

peak frequency of the duckling vocalizations was higher than both the male and 

female vocalizations.  
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Table 3.2. The average minimum frequency, maximum frequency, and peak 
frequency (frequency at greatest power) of male, female and duckling vocalizations, 
along with the calculated frequency of best hearing, and high-frequency limit of 
hearing. These two measurements were only calculated for adult lesser scaup, and 
males and females were not separated. 
 Min Freq 

(Hz) 
Max Freq 
(Hz) 

Peak 
(Dominant) 
(Hz) 

Best 
Hearing 
(Hz) 

High-Freq 
Limit* 
(Hz) 

Male 709 2850 1779 2400 5300 

Female 391 7594 2736 2400 5300 

Duckling 2441 5724 4061   

 

Auditory Brainstem Response 

	
  
The typical lesser scaup auditory brainstem response displayed 2-3 prominent 

peaks within 4-5 ms after the stimulus reached the bird’s ear canal (Figure 3.6). As 

with other birds tested, ABR latencies increased and amplitudes decreased as stimulus 

level decreased. These data are those first presented in chapter 1.   

 

Figure 3.6. A typical auditory brainstem response from a lesser scaup with a 2.86 Hz, 
90 dB (measured at the ear) tone pip as the stimulus. This figure represents an 
average of 600 responses. 
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The ABR audiograms estimated with the visual inspection method and the 

linear regression method were both U-shaped. Sensitivity peaked between 1.0-3.0 

kHz, with a steep high-frequency roll-off after 4.0 kHz. Threshold estimates did not 

differ between the visual inspection method and the linear regression method across 

frequencies (F(1,8)=2.5, p = 0.15; two-way repeated measures ANOVA). Figure 3.7 

compares the visual inspection ABR audiogram to the psychoacoustic audiogram. 

Both methods produced U-shaped audiograms with similar regions of greatest 

sensitivity (from 1-4 kHz). ABR thresholds were higher than psychoacoustic 

thresholds at all frequencies tested (ABRs were not measured at 8 kHz). Differences 

ranged from 11.3 dB at 5.7 kHz to 26.8 dB at 1.0 kHz.   

 

Figure 3.7. A comparison of audiograms using the auditory brainstem response and 
psychoacoustics. The ABR was not measured at 8 kHz. Vertical bars represent +/- 1 
standard deviation. 
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DISCUSSION 

Psychoacoustics 

	
  
The average lesser scaup behavioral audiogram was U-shaped, with sensitivity 

peaking at 2.0-3.0 kHz, and an absolute threshold of approximately 14 dB. Existing 

data from over 50 species of birds tested to date reveal a typical avian pattern of 

greatest sensitivity between 2000 and 5000 Hz (Dooling et al., 2000, chapter 1). The 

lesser scaup displayed a low frequency roll off of approximately 10 dB per octave 

below 1.0 kHz, and a much steeper high frequency roll off above 4.0 kHz 

(approximately 50 dB per octave). Average avian absolute thresholds in the region of 

peak sensitivity approach 0 dB, with a loss of sensitivity below 1.0 kHz of about 20 

dB/octave and a loss of sensitivity above 4.0 kHz of about 60 dB/octave (Dooling et 

al., 2000). The only behavioral audiogram available for another non-diving duck 

species, the mallard duck, also follows this pattern (Trainer, 1946).   

 The application of signal detection theory provides some information on how 

the subject’s sensitivity interacts with bias in detection tasks (Green & Swets, 1966). 

Although subjects’ criterion can be manipulated by changing aspects of reinforcement 

(amount/timing of food reward, presence/absence of punishment, etc.), subjects will 

adopt criteria with some amount of individual variation (Herrnstein, 1961; Green & 

Swets, 1966; Lattal, 1979; Mandell, 1981; Nevin, 1981). Some of this individual 

variation can be accounted for using false alarm rates and different d' levels. For the 

lesser scaup in this study, thresholds were estimated using a hit rate of 50%, as well 

as using d' levels of 1.0, 1.5, and 2.0. When these threshold estimates were compared, 
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the 50% hit rate tracked most closely to a d' of 1.5, which is similar to other birds 

performing detection tasks (Dooling & Saunders, 1975; Dooling & Okanoya, 1995).  

 In this study, critical ratio measurements allowed us to verify that the 

estimated thresholds in quiet actually approached absolute levels. Critical ratios for 

the lesser scaup were estimated at two frequencies, one of which was the frequency of 

most sensitive hearing (2.86 kHz). The average critical ratio at 2.86 kHz was 22.5 dB, 

very similar to that reported for the budgerigar (19.9 dB) and canary (Serinus canaria 

domestica, ~20 dB) (Dooling & Saunders, 1975; Lauer et al., 2009). Background 

noise in the tanks at Patuxent Wildlife Research Center was quieter than one critical 

ratio below the threshold at 2.86 kHz, suggesting that the absolute thresholds reported 

in this study were not masked by ambient noise.  

Like other birds, hearing in lesser scaup aligns with species-specific 

vocalizations. The vocalization peak power in several avian species, including the 

downy woodpecker (Picoides pubescens), hairy woodpecker (Picoides villosus), and 

budgerigar, corresponds well to the most sensitive hearing range (Dooling & 

Saunders, 1975; Lohr et al., 2013). Henry and Lucas (2008, 2010) suggested that in 

several songbird species (Carolina chickadees, Poecile carolinensis, tufted titmice, 

Baoelophus bicolor, house sparrows, Passer domesticus, and white-breasted 

nuthatches, Sitta carolinensis), the high-frequency limit of sensitive hearing may have 

co-evolved with the maximum frequency of vocalizations. Male and female 

vocalizations of lesser scaup are dimorphic in nature. Males are generally quieter, but 

emit a whirring, kazoo-like “whew,” or “whee-ooo,” often referred to as a coughing 

call, during courtship (Johnsgard, 1965). Female scaup are louder and more 
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frequently vocal. They produce a noisy “purrr” during courtship, in the presence of 

predators, and also to inform mates and ducklings when they are returning to the nest 

(Johnsgard, 1965). Both sexes primarily vocalize while sitting on water, and rarely 

while flying (Austin et al., 1998). The average peak frequency of both the male 

(1.779 kHz) and the female (2.736 kHz) vocalizations align with the region of 

greatest sensitivity on the audiogram, and the calculated frequency of best sensitivity 

(2.4 kHz). The range of frequencies in lesser scaup duckling vocalizations (2.441-

5.724 kHz) also aligns well with both the frequency of best sensitivity as well as the 

high-frequency limit of sensitive hearing (5.3 kHz). Thus, it would appear that the 

lesser scaup has hearing abilities that correspond well to both the adult and duckling 

vocalizations, leading to improved chances for cooperative foraging and predator 

detection, courtship, and nest success.  

Comparison of ABR and Psychoacoustic Audiograms 

	
  
Both ABR and psychoacoustic measures yielded audiograms with similar U-

shapes and regions of greatest sensitivity. However, ABR thresholds were higher than 

psychoacoustic thresholds at all frequencies. This difference was least at the highest 

frequency tested using both methods (5.7 kHz) and greatest at 1.0 kHz, where the 

ABR threshold was 26.8 dB higher. This difference could be attributed to a variety of 

factors, including stimulus characteristics (brief ABR stimuli vs. longer 

psychoacoustics stimuli), physiological state of the subjects (anesthetized for the 

ABR and awake for psychoacoustics), individual differences in hearing abilities 

(different subjects were used for each method), and the nature of the two methods. 

Disparities between psychoacoustics and the ABR have been documented in many 
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animal groups, but differences between the two methods appear to be greatest in 

avian species, including screech owls (Megascops asio), budgerigars, tufted titmice, 

house sparrows, white-breasted nuthatches, and finches (Wooley & Rubel, 1999; 

Brittan-Powell et al., 2002, 2005; Henry & Lucas, 2008). The only other data 

available for a duck species, the mallard, also displays this disparity (Trainer, 1946; 

Dmitrieva & Gottlieb, 1992). This difference may be a consequence of the ability to 

detect responses in mammals vs. birds, since mammals on average have a greater 

absolute number of auditory nerve fibers than birds, and a greater proportion of fibers 

activated at threshold (Brittan-Powell et al., 2002).  

Conclusions 

Used in conjunction, psychoacoustics and the ABR were complementary 

methods to test hearing in lesser scaup. Audiograms produced maintained the same 

shape and region of greatest sensitivity, regardless of method used. The ABR is 

therefore a valuable tool to provide a rapid (under an hour) estimate of hearing, 

especially with animals that cannot be trained. For most animal species, the total 

number of individuals tested is such a small fraction of the population that there is no 

real consensus on individual variation of hearing and how this variation may affect 

current assumptions about a species-specific audiogram. The ABR should continue to 

be used to increase this sample size and better characterize hearing abilities across 

individuals and species, especially in animals that are not typically kept in captivity. 

In birds, psychoacoustics may remain the “gold standard” for measuring hearing, and 

should continue to be used when possible to verify results obtained with other 

methods. 
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Chapter 4: Underwater Hearing in a Diving Bird 
	
  

INTRODUCTION 
	
  

Underwater hearing abilities have been examined in species of dolphins, 

whales, seals, sea lions, fishes, turtles, frogs, and even some invertebrates (Terhune & 

Ronald, 1975; Thomas et al., 1988; Christensen-Dalsgaard et al, 1990; Römer & 

Tautz, 1991; Budelmann, 1992; Kastak, 1996; Christensen-Dalsgaard et al., 2012; see 

Fay, 1988 for a compilation of results from many species). However, there are 

currently no measurements of underwater hearing by any diving bird. Diving birds 

may be subject to the same potential impacts of man-made noise sources as many of 

these other aquatic organisms, but it is impossible to comprehensively examine 

possible effects of increased noise levels on hearing by an aquatic animal without first 

investigating its auditory sensitivity and how it processes sound. 

Man-made noise sources may be impulsive, such as explosions, pile driving, 

and seismic sources, or continuous, such as commercial and recreational shipping 

noise. All have the potential to mask communication, mask valuable aspects of the 

soundscape, deter animals from preferred foraging or breeding habitat, disrupt 

predator-prey interactions, and/or cause temporary or permanent hearing impairment 

(e.g. Finneran & Schlundt, 2004; Nowacek et al., 2004; Finneran et al., 2010; 

Finneran & Schlundt, 2010; Parks et al., 2012; Richardson et al., 2012; Tougaard et 

al., 2012; Tyack & Janik, 2013). Extreme impulse noise can cause physiological 

damage, such as rupture of the tympanic membrane, fracture of the middle ear 

ossicles, or non-auditory tissue injury (e.g. Keevin & Hempen, 1997; Hamernik et al., 

2002; Davis et al., 2009; Carlson, 2012; Casper et al., 2012; Le Prell, 2012). 
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Most studies on the effects of man-made noise sources on birds concern 

vehicular noise. Urban songbirds alter their communication signals to avoid the 

loudest frequencies of traffic noise (Slabbekoorn & Ripmeester, 2008; Slabbekoorn, 

2013). Traffic noise, as well as noise associated with oil and gas extraction, is also 

associated with a decline in the diversity and density of songbirds (Rheindt, 2003; 

Reijnen & Foppen, 2006; Bayne et al., 2008; Francis et al., 2009). None of these 

studies, however, involve aquatic birds, and without measurement of underwater 

hearing sensitivity in birds, it is impossible to predict susceptibility of aquatic birds to 

underwater noise.  

While often complicated to implement, measurements of hearing abilities of 

animals underwater have been carried out in a number of species. A variety of 

measurements, including both behavioral and auditory evoked potential audiograms, 

have been employed to test hearing in marine mammals and fishes (Gerstein et al., 

1999; Wolski et al., 2003; Houser & Finneran, 2006; Mooney, 2009; Ladich & Fay, 

2013). Such measurements are lacking in birds, although in-air audiograms exist for 

many avian species (Dooling et al., 2000).   

Of the 29 extant orders of birds, eight orders contain species that dive to some 

extent while foraging: Anseriformes (ducks, geese, and swans), Charadriiformes 

(gulls and allies), Gaviiformes (loons), Podocipediformes (grebes), Procellariiformes 

(albatrosses, petrels, and allies), Sphenisciformes (penguins), and Phaethontiformes 

(tropicbirds). Time spent underwater ranges from minimal plunges in gulls and 

waders to extensive diving in penguins and puffins, with emperor penguin dives 

documented to depths of over 500m (Meir et al., 2008). At the shallow end of the 
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diving continuum, some duck species of the family Anatidae can dive to depths of 

tens of meters for up to a few minutes (Roberston et al., 2002). The long-tailed duck 

(Clangula hyemalis) is the deepest diver of all ducks, reaching at least 60 m in depth 

to search for crustaceans, fishes, and mollusks (Roberston et al., 2002).   

Long-tailed ducks are potentially impacted by man-made noise sources during 

their long migration away from remote Arctic and subarctic breeding grounds. The 

Atlantic flyway population of long-tailed ducks winter along the coast from Labrador 

south to North Carolina, as well as Hudson Bay and the Great Lakes (Silverman et al., 

2012). They spend the majority of their time in coastal marine waters near major 

population centers along the Atlantic coast where they are potentially exposed to a 

variety of in-air and underwater noise sources, including construction from coastal 

development, commercial shipping, and recreational vessels. In addition, their flight 

paths and wintering areas overlap with potential wind-energy development sites (Sea 

Duck Joint Venture, 2012). Offshore wind farms are associated both with impulsive 

noise sources, such as pile driving during construction, as well as continuous 

maintenance noise (Maxon, 2000; Henriksen, 2001).   

Given their coastal proximity and exposure to a variety of man-made noise 

sources, long-tailed ducks provide a useful model for the first investigation of 

underwater hearing in a diving bird. In addition, access to a captive breeding 

population and diving facility provided the opportunity to raise and train ducklings to 

participate in a long-term behavioral study. Therefore, the objective of this study was 

to measure the in-air and underwater auditory sensitivity of long-tailed ducks, using 

psychoacoustic methods.  Sensitivity of the long-tailed ducks was compared in-air 
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and underwater, and underwater sensitivity was compared to that of marine mammals 

and fish.  

METHODS 
	
  
Subjects 

 Two long-tailed ducks, one male (with a pink identification leg band) and one 

female (with a yellow leg band), were used in the study. Sex of birds was identified 

through plumage patterns and cloacal inspection for phallus protrusion. Both birds 

were raised from eggs at the Patuxent Wildlife Research Center in July of 2012. 

Testing began when the birds were approximately one year old. The male bird died 

unexpectedly in the fall of 2013 so the remainder of the testing was conducted with 

the female bird. Therefore, the male bird was only able to complete about half of the 

underwater testing, and no in-air testing. The female participated in both in-air and 

underwater testing.  

In-Air Testing Procedure 

All in-air and underwater experimental events were coordinated by a custom 

computer system (SEABIRD – Sensory Equipment for Animal Behavior and 

Integrated Research Data; developed by R. Therrien, U.S. Geological Survey 

Patuxent Wildlife Research Center), described in more detail in chapter 3. In-air 

equipment, procedures, stimuli, and calibration were described in detail in chapter 3, 

and summarized here. The ducks were tested in rectangular concrete tanks (2.4 m 

length x 1.8 m width x 2.4 m depth). The testing apparatus consisted of an 

observation target, report target, automatic mealworm dispenser, and speakers (Figure 

4.1). During in-air testing, the observation target was at the surface of the water and 
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the speaker was mounted on the wall of the tank, approximately 30.5 cm in front of 

the duck when pecking at the observation target.  

In-air stimuli consisted of two pure tone 1000-ms sinusoidal pulses separated 

by 500 ms, with a 250-ms rise time, a 500-ms steady state peak, and a 250-ms fall 

time.  Hearing sensitivity in-air was measured for frequencies of 0.5, 1, 2, and 2.86, 

4.0, and 5.7 kHz. 

Ambient noise in the experimental set up was also measured using the 

Earthworks M30 microphone connected to the iPad. Ambient spectral levels were 

visualized using SignalScope Pro on the iPad. 

Underwater Testing Procedure 

During underwater trials, the observation target was lowered approximately 

33 cm below the surface of the water, and the speaker (University Sound UW-30; 

Electro-Voice, Burnsville, MN) was mounted on a bracket from the front wall of the 

tank, 30.5 cm in front of the duck when pecking the observation target (Figure 4.1). 

The report target and mealworm dispenser always remained at the water surface.   
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Figure 4.1. In-air (top) and underwater (bottom) equipment set-up. Both set-ups 
included a speaker mounted from the front wall of the tank, 30.5 cm in front of the 
observation target. The stimulus was played from the speaker, and the bird reported 
the presence of a stimulus by pecking the report target. After a stimulus was correctly 
reported, the bird was rewarded with mealworms that dropped out of the feeder.  
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In-air and underwater training and testing procedures were similar. The ducks 

were trained on the go/no-go task until reliably performing with above 90% accuracy.  

When a trial began, both targets were illuminated. The duck then had to peck the 

observation target in air or underwater until either a tone was played or the target 

lights turned off. If a tone was played, the duck then had four seconds to peck the 

report target (hit) before the target lights turned off and the trial ended. If no tone was 

played (sham trial) the trial also ended (correct rejection). If a tone was played and 

the duck failed to respond (miss), the trial also ended with no reward. If no tone was 

played and the duck pecked the report target (false alarm), the trial ended and the 

lights in the building were extinguished for 10 seconds as a punishment. The bird’s 

rate of response during sham trials was used to calculate false alarm rate.   

Given short diving times and the requirement that the duck station at the 

observation target prior to stimulus onset, the underwater stimulus was a single 1000-

ms sinusoidal pulse, and rise fall times of x ms. Hearing sensitivity was measured for 

frequencies of 0.5, 1, 2, and 2.86 kHz. The method of constant stimuli was used, and 

the signal amplitude varied randomly among seven pre-selected levels at each 

frequency tested (Table 4.1), ranging from 82 to 142 dB re 1 µPa. Some levels were 

repeated more than once per block at 0.5 and 1.0 kHz, but only the first incidence of 

each stimulus level per block was used for analysis. Higher levels at these frequencies 

were repeated to avoid having too many stimuli well-below threshold, and to avoid 

having additional levels above 142 dB re 1 µPa (because of speaker distortion and 

risk of hearing damage). 
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Table 4.1. Frequencies and stimulus levels used in testing.  

Frequency 
(kHz) 

Level 1 
(dB re 
1 µPa) 

Level 2 
(dB re 
1 µPa) 

Level 3 
(dB re 
1 µPa) 

Level 4 
(dB re 
1 µPa) 

Level 5 
(dB re 
1 µPa) 

Level 6 
(dB re 
1 µPa) 

Level 7 
(dB re 
1 µPa) 

0.5 102 112 122 132 132 142 142 

1.0 92 102 112 122 132 142 142 

2.0 82 92 102 112 122 132 142 

2.86 82 92 102 112 122 132 142 

  

To calibrate underwater stimuli, a receiving hydrophone with preamplifier 

(Teledyne-Reson 4032, Slangerup, Denmark; sensitivity = -170 dB re 1 V/µPa) was 

mounted in the position at which the bird’s ear would be located while pecking at the 

observation target. Calibration stimuli were the same stimuli used in testing, except 

repeated ten times. During playback of the calibration tones, the peak output voltage 

of the hydrophone was measured on an oscilloscope (Rigol DS1052E, Beijing, China), 

and this voltage measurement was used to calculate the equivalent decibel level. The 

potentiometer attenuation values were then adjusted until the decibel level matched 

the desired level. Every stimulus level was calibrated separately for the frequency that 

was being tested. This calibration was conducted weekly.  

Further measurements of calibrated stimuli with a signal analyzer (Hewlett 

Packard 35665A, Palo Alto, CA) revealed variation in stimulus generation of up to 

+/- 5 dB at some stimulus levels. This variation was not observed in the in-air set up, 

and the source of this variation was unidentified. Because of this, while the stimulus 

values were nominally in steps of 10 dB from 82 to 142 dB re 1 µPa, a few steps, as 
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measured by the signal analyzer, were up to 15 dB. This affected the method of 

analysis for the data, described below.  

Using the nominal 10 dB steps, the birds were tested repeatedly at each 

frequency until threshold values showed no further improvement (the threshold, 

corresponding to the 50% correct detection level, was within 4 dB for 300 

consecutive trials). Sessions with false alarm rates higher than 15% were discarded. 

However, because of the measured variation in stimulus values, a final threshold was 

not defined. Instead, the variation was taken into account by grouping the stimuli at 

each frequency into “low,” “medium,” and “high” stimulus levels (Table 4.2). For 

example, the nominal 82 and 92 dB re 1 µPa stimulus levels were grouped in a “low” 

stimulus level, and +/- 5 dB was added on either side to describe the variation that the 

birds actually heard during testing. 

Table 4.2. Stimulus groupings for analysis purposes. Stimulus were grouped into 
three levels (low, medium, and high), and ranges for each of these groups were 
calculated taking into account a possible +/- 5 dB variation at each level. 
Stimulus Grouping Nominal Levels Included Range with +/- 5 dB 

Variation 
Low 82, 92 dB re 1 µPa 77 – 97 dB re 1 µPa 

Medium 102, 112 dB re 1 µPa 97 – 117 dB re 1 µPa 

High 122, 132, 142 dB re 1 µPa 117 – 147 dB re 1 µPa 

 

After these groupings were defined, the percentage correct for each of the groupings 

was calculated using the final 200 trials at each frequency. Instead of defining 

threshold at a particular decibel level, threshold was defined as falling between two 

groupings (i.e. between “medium” and “high” at 1.0 kHz).   	
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RESULTS 

In-Air 

In-air auditory sensitivity of one long-tailed duck (the female) was measured 

at frequencies between 0.5 and 5.7 kHz. The percentage of sessions discarded 

because of a false alarm rate of 15% or higher was 3.8%. Figure 4.2 displays the in-

air audiogram of the long-tailed duck and to validate this curve average in-air 

audiogram from three lesser scaup (Aythya affinis), another duck species tested using 

the same procedures and equipment (chapter 2), are also included. Each symbol on 

the figure represents an average threshold for the last twenty trials tested at that 

frequency and decibel level. The long-tailed duck’s greatest sensitivity was at 2.0 kHz, 

with a threshold of 10.2 dB re 20 µPa, corresponding to a hit rate of 50%.  The high 

frequency roll-off above 3.0 kHz was much steeper than the low frequency roll-off. 

Across all frequencies, the 50% performance level corresponded to a d' of 1.57.  

 

 

 



	
   104	
  

 

Figure 4.2. The long-tailed duck in-air audiogram, plotted with the average in-air 
lesser scaup audiogram from chapter 3. The lesser scaup and long-tailed duck were 
tested in the same experimental set-up. Also plotted is in-air background noise 
(plotted in spectrum levels) in the dive tank building. Spectrum levels were measured 
using SignalScope Pro software on an iPad. 
 
Underwater  
 

Two long-tailed ducks participated in underwater sensitivity testing.  One bird 

(Pink) completed testing at 0.5, 2.0, and 2.86 kHz, and began testing at 1.0 kHz 

before he died. The other bird (Yellow) completed testing at 2.0 and 2.86 kHz.  Less 

than 10% of sessions for each bird were discarded because of a false alarm rate higher 

than 15% (5% for Pink bird and 0% for Yellow bird).  

Percentages correct at each stimulus grouping (low, medium, and high) and 

for each frequency are reported in Figure 4.3 and Table 4.3. Because the lowest 

stimulus level at 0.5 kHz fell above the “low” grouping, there are only results for the 

“medium” and “high” grouping at that frequency. While all other percentages 
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represent the last two hundred trials, the threshold at 1.0 kHz only represents the first 

100 trials of testing at that frequency, before the bird’s health declined.   

Table 4.3. Percentage correct at each stimulus grouping and frequency for each bird. 
Pink bird was tested at all four frequencies, and Yellow bird only at 2.0 and 2.86 kHz. 
Pink bird’s results at 1.0 kHz only represent the first 100 trials at that frequency, after 
which the bird’s health declined.  
Frequency 
(kHz)  

Low (77-97 dB re 1 
µPa) 

Medium (97-117 dB re 1 
µPa) 

High (117-147 dB 
re 1 µPa) 

0.5 Pink N/A 25.0% 81.7% 

1.0 Pink 5.0% 57.5% 95.0% 

2.0 Pink 12.5% 80.0% 96.7% 

2.0 Yellow 15.0% 70.0% 96.7% 

2.86 Pink 12.5% 72.5% 98.3% 

2.86 Yellow 5.0% 60.0% 93.3% 
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Figure 4.3. Percentage correct at each of the three stimulus groupings. Because the 
lowest stimulus level at 0.5 kHz fell above the “low” grouping, there are only results 
for the “medium” and “high” grouping at that frequency. Vertical bars represent 
standard deviations at frequencies with results from two birds (2.0 and 2.86 kHz).  
 

Threshold was defined only as falling between two stimulus groupings (the 

two groups that bracketed 50% correct detection). These threshold ranges are plotted 

as boxes alongside underwater audiograms from several marine mammal and fish 

species in Figures 4.4 and 4.5. The figures only include behavioral thresholds (no 

auditory evoked potentials) to provide consistency in measurement methods. Figure 

4.4 displays the entire audiogram for all species listed, and Figure 4.5 displays only 

frequencies up to 10 kHz, to provide more detail in the long-tailed duck’s likely 

underwater hearing range. 
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Figure 4.4. The range of the long-tailed duck’s underwater thresholds at all 
frequencies tested, along with underwater behavioral audiograms from the Steller sea 
lion (Eumetopias jubatus), California sea lion (Zalophus californianus), harbor 
porpoise (Phocoena phocoena), goldfish Carassius auratus), Atlantic salmon (Salmo 
salar), and striped dolphin (Stenella coeruleoalba).  
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Figure 4.5. The range of the long-tailed duck’s underwater thresholds at all 
frequencies tested, along with underwater behavioral audiograms, displayed up to 10 
kHz, from the Steller sea lion, California sea lion, harbor porpoise, goldfish, Atlantic 
salmon, and striped dolphin. 

DISCUSSION 
	
  

In air, the long-tailed duck heard much like the lesser scaup, another member 

of the family Anatidae, tested in chapter 2. Sensitivity was best at 2.0 – 3.0 kHz, with 

a steeper high-frequency roll-off than at lower frequencies. Both the lesser scaup and 

the long-tailed duck had audiograms that coincided with the typical U-shaped avian 

audiogram, with most birds having best sensitivity between 2.0 and 5.0 kHz (Dooling 

et al., 2000).   

Signal detection theory was used to provide information on how the subject’s 

sensitivity interacts with bias in this task (Green & Swets, 1966). All thresholds in 
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this study were estimated using a hit rate of 50%, which corresponded roughly to a d' 

of 1.5 across all frequencies, both in the air and underwater. This d' value is similar to 

other birds performing detection tasks (Dooling & Saunders, 1975; Dooling & 

Okanoya, 1995; chapter 2).  

This study represents the first measurements of underwater auditory 

sensitivity in any bird. Underwater sound production and reception of marine 

mammals and fish have been investigated for much of the last century, while diving 

birds have garnered little attention in this respect. The long-tailed ducks in this study 

were tested underwater at frequencies from 0.5 kHz to 2.86 kHz. Although exact 

threshold points could not be determined because of variation in the stimulus 

generation system, threshold for 0.5 kHz falls in the range of 97 – 147 dB re 1 µPa, 

and thresholds for 1.0, 2.0 and 2.86 kHz fall in the range of 77 – 127 dB re 1 µPa. 

Many marine mammals tested, and especially the odontocetes, have audiograms with 

much greater absolute sensitivity (35-55 dB re 1 µPa, Johnson, 1967; Thomas et al., 

1988; Nachtigall et al., 1995; Sauerland & Denhardt, 1998; Kastalein et al., 2002; 

Kastalein et al., 2003).  

 Odontocetes, however, are fully aquatic, and therefore are not adapted to 

hearing in air. Amphibious animals, like diving birds, pinnipeds, frogs, and some 

turtles, may be adapted to hear in both air and water. Maximum underwater 

sensitivity is relatively consistent across pinniped species, but in-air hearing varies 

greatly across species, without any consistent correlation with amount of time spent 

in the water, diving ability, or sound production (Schusterman, 1972; Kastalein et al., 

2005; Au & Hastings, 2008; Reichmuth et al., 2013). Frog species tested, however, 
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do show a correlation between underwater hearing sensitivity and degree of aquatic 

adaptation (Lombard et al., 1981; Christensen-Dalsgaard et al., 1990).   

 The ability to dive spans many orders of birds, with a correspondingly large 

range in diving behavior and physiology. Since the long-tailed duck is currently the 

only bird with underwater auditory sensitivity measurements, it is difficult to predict 

how underwater hearing could correlate with adaptations for an aquatic lifestyle in 

birds. The only suggestion that diving birds may vocalize underwater came from 

recordings of a single macaroni penguin at the Moscow Zoo (Markov, 1977), but no 

subsequent studies have documented underwater sound production in any bird.  

 In the absence of underwater communication, diving birds may use hearing 

for auditory scene analysis. Long-tailed ducks and related diving duck species may 

use gradations in the soundscape (the collection of sounds that emanate from 

landscapes – Pijanowski et al., 2011) to locate suitable foraging areas. Seaducks are 

often observed foraging around oyster reefs, which provide habitat for many species 

of mollusks, crustaceans, and fishes, all important foraging items (Perry et al., 2007). 

Several studies have shown that reefs form a distinct soundscape, with generally 

higher sound levels compared to adjacent soft-bottom habitats, generated by the 

population of invertebrates and fish that inhabit the reef (Simpson et al., 2008; Lillis 

et al., 2013). Listening for these soundscape characteristics would be an efficient 

method to find suitable foraging habitat for diving birds.  

 The mechanisms underlying underwater hearing in diving birds are difficult to 

predict. Birds may hear through the traditional outer-middle-inner ear route that they 

utilize in the air. However, an air-filled middle ear could create an impedance 
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mismatch underwater and a loss of sensitivity, and it is possible that diving birds may 

hear through bone conduction, as suggested for pinniped underwater hearing 

(Repenning, 1972; Ramprashad, 1975; Hemilä et al., 2006), and much like human 

hearing underwater (Brandt & Hollien, 1969; Hollien & Brandt, 1969; Repenning, 

1972). Adaptations for diving, such as the closing of the external auditory meatus or 

venous tissue in the middle ear (such as in the king penguin – Sade, 2008), could also 

impact the sensitivity and mechanism of underwater hearing. This venous tissue 

causes the middle ear to fill with blood to compensate for increasing pressure on the 

tympanic membrane as the animal dives (Repenning, 1972; Stenfors et al., 2001). It is 

possible that when this tissue is flooded with blood, acoustic conductance could occur 

through the traditional tympanic route (Møhl, 1968; Repenning, 1972; Moore & 

Schusterman, 1987; Terhune, 1989). 

Underwater sounds have two components, particle motion and sound pressure.  

Particle motion is generated by the hydrodynamic flow near the acoustic source 

(Rogers & Cox, 1988; Radford et al., 2012). Particle motion dominates in the area 

close to the acoustic source, termed the near-field and defined as λ/2π, and the far-

field is defined as the area outside the near-field, where sound pressure dominates 

(Bergeijk, 1967; Rogers & Cox, 1988; Higgs et al., 2006; Montgomery et al., 2006; 

Maruska et al., 2007; Radford et al., 2012). It is possible, although unlikely, that some 

of the tones presented in this study could have been perceived through acoustic 

particle motion and not sound pressure. Although auditory thresholds in this study 

were not measured in terms of particle motion, the frequencies tested in these 

experiments were typically higher than those that would be used to test particle 
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motion sensitivity. Because the near-field at the frequencies tested in this study is 

very small, it can be assumed that the bird is positioned in the far-field while listening 

to the stimuli, and that the particle motion contribution is likely not detected.  

 While results of this study cannot be used to generate an exact audiogram for 

long-tailed ducks underwater, the results show that this species can hear underwater 

at the frequencies tested and thus may be potentially impacted by man-made noise 

sources underwater. If diving birds do indeed use soundscape cues to assist with 

foraging (e.g. to find oyster reefs), it is possible that man-made noise sources could 

mask these cues. If a bird is diving in the proximity of an intense impulsive event 

(like pile driving during construction of wind farms), it could potentially be 

susceptible to physiological injury like other animals exposed to impulsive noise (e.g. 

Keevin & Hempen, 1997; Hamernik et al., 2002; Davis et al., 2009; Carlson, 2012; 

Casper et al., 2012; Le Prell, 2012). 

Conclusions 

 Underwater hearing was measured for the first time in a diving bird. The birds 

reliably responded to high intensity stimuli (above approximately 120 dB re 1 µPa). 

These first measurements highlight the need for further investigation into underwater 

hearing in diving birds. The large differences in diving behavior across bird orders 

suggest that it is crucial to extend this study to other diving bird species in order to 

understand how birds perceive sound underwater. Further behavioral, physiological 

and anatomical investigations should be conducted to elucidate the sensitivity and 

mechanism of hearing in diving birds. In respect to the impacts of anthropogenic 

noise sources such as construction, seismic surveys, military sonars, etc. on aquatic 
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animals, diving birds should receive attention comparable to that paid to other aquatic 

animals such as marine mammals and fish.  
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Chapter 5: General Discussion 
	
  

Hearing has been examined in only a small fraction of extant bird species, and 

in only two aquatic bird species, the black-footed penguin (Wever et al., 1969) and 

mallard duck (Trainer, 1946). Aquatic bird species are scattered throughout the avian 

phylogeny, and their adaptations for an aquatic lifestyle may impact hearing 

sensitivity. This research was an exploration of aquatic bird hearing across species 

and in-air and underwater.  

In the first set of experiments, the in-air auditory sensitivity was compared 

across two species of diving duck, six species of seaduck, one species of loon, and 

one gannet species. Auditory brainstem response (ABR) methodology	
  showed a U-

shaped audiogram, a region of greatest sensitivity (1.0 – 3.0 kHz), and a waveform 

morphology similar to other bird species tested in previous studies (Brittan-Powell et 

al. 2002, 2005; Henry & Lucas, 2010; Gall et al., 2011). Among the aquatic bird 

species tested, the waveform morphologies of the duck species were more similar to 

each other than to the two non-duck species. The lesser scaup had the lowest ABR 

thresholds, and the northern gannet had the highest. Variation between duck and non-

duck species in-air hearing abilities may be indicative of divergent life history traits, 

morphology, and behavioral characteristics. 

Psychoacoustic methods were then used to explore the in-air hearing of one 

species of diving duck, the lesser scaup, more in depth. Psychoacoustics produced a 

U-shaped audiogram, with sensitivity peaking at 2.0 – 3.0 kHz, and an absolute 

threshold of approximately 14 dB re 20 µPa.  The ABR yielded an audiogram with a 

similar shape and region of maximum sensitivity, but with thresholds up to 26.8 dB 
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higher. This difference can be attributed to either the methodological differences 

inherent in the two types of tests (stimulus differences, analysis differences, etc.), the 

physiological state of the subjects (awake vs. anesthetized), or individual differences 

in hearing abilities.   

Psychoacoustic methods were then used to measure the in-air and underwater 

hearing sensitivity of the long-tailed duck. The in-air audiogram resembled that of the 

lesser scaup tested in the previous chapter, except with peak sensitivity at 2.0 kHz, 

instead of 2.86 kHz. Because of the difficulties inherent in measuring underwater 

acoustic stimuli, it was not possible to construct an exact audiogram underwater, but 

birds were trained to reliably respond to underwater acoustic stimuli. At all 

frequencies tested (from 0.5 kHz to 2.86 kHz), birds responded to high-intensity 

stimuli (approximately 120 dB re 1 µPa and greater) greater than 80% of the time. 

Thresholds were defined in ranges, with 0.5 kHz falling between 97 and 147 dB re 1 

µPa, and frequencies of 1.0, 2.0 and 2.86 kHz falling between 77 and 127 dB re 1 µPa.  

 The aim of this dissertation was to explore the in-air and underwater auditory 

sensitivity of aquatic birds to add to the literature on avian hearing. Furthermore, very 

little biological research has been devoted to the group of birds examined in this 

dissertation. Many of these species are widely distributed, spend a great deal of time 

far offshore, and migrate long distances, making them particularly difficult to study. 

Basic biological information for most species is lacking, and data suggest that many 

of these species are declining drastically (North American Waterfowl Management 

Plan [NAWMP]; USFWS and Canadian Wildlife Service, 1994).  Most of these 

species are hunted throughout their range, subject to damage from oil spills, and 
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prone to ingesting lead and plastics, while water pollution in wintering areas renders 

these birds vulnerable through their consumption of filter-feeding organisms 

(Peterson & Ellarson, 1978; Mudge & Allen, 1980; Brown & Brown, 1981; Perry et 

al., 1984; Piatt et al., 1990; Savard, 1990; Bartonek, 1994; Henny et al., 1995; Flint et 

al., 1997). By-catch in fishing nets is a large source of mortality for most of these 

species, although this source of mortality has not been reliably quantified  (Scott, 

1938; Ellarson 1956; Turnbull et al., 1986). Zydelis et al. (2013) estimated that at 

least 400,000 birds may be killed in gillnets each year, and that pursuit-diving species, 

such as loons and seaducks, may be the most vulnerable to entanglement (Piatt & 

Nettleship, 1987; Zydelis et al., 2009). All of these threats emphasize the importance 

of understanding the biology and behavior of species in order to create effective 

management plans to address the threats. Examination of the hearing abilities of these 

poorly-studied species could assist in mediating all types of threats in several ways. 

Hearing may play a role in how a bird selects foraging or breeding habitat, pursues 

prey, finds mates and offspring, or navigates during migration. A deeper 

understanding of these behaviors will aid in creating management plans to address a 

suite of potential threats to declining species.  

 In particular, knowledge of hearing abilities can be used to inform potential 

impacts of man-made noise sources on aquatic birds. Most current mandates 

addressing climate change include the construction and expansion of alternative 

energy sources, such as offshore wind farms. European studies of impacts of wind 

farms located several kilometers from the coast revealed evidence of avoidance of 

wind farm areas by loons, gannets, ducks and geese (Petersen et al., 2004; Desholm & 
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Kahlert, 2005). Avoidance of the area could be due to the visual presence of the 

turbines or the noise (both in-air and underwater) produced by the wind farm. Not 

only does the construction of wind turbines increase local underwater noise levels 

through activities such as pile driving and shipping of materials, but operational noise, 

while at a much lower level, can affect the surrounding area for the life of the facility 

(Maxon, 2000; Henriksen, 2001). Noises such as those produced from wind farms (or 

other sources in the air or underwater) can effect aquatic animals by masking 

communication or soundscape cues, causing displacement from foraging or breeding 

areas, or causing physiological damage to auditory and non-auditory tissues 

((McCauley et al., 2003; Smith et al., 2004; Wysocki et al., 2006, 2007; Parks et al., 

2012; Noren et al., 2012; Casper et al., 2013; Tyack & Janik, 2013).   

The majority of studies addressing the impact of noise on aquatic life neglect 

impacts to birds. Most diving bird species may not dive to depths comparable to 

marine mammals and fish, but they are exposed to man-made noise sources in the air 

and underwater, and could potentially be affected.  

 Some aquatic bird species may be especially susceptible to the impacts of in-

air man-made noise sources. For example, some aquatic bird species, such as the 

northern gannet and common eider, are colony nesters, and in consequence may be 

very susceptible to noise disturbance. In North America, there are only six colonies 

for the northern gannet, with hundreds of nests at each location (Mowbray, 2002). 

When a population is concentrated in several small areas (instead of distributed across 

a wide range), the population is more susceptible to catastrophic damage as a result of 

human intrusion at these limited locations (Carnet & Sydeman, 1999; Sladen & 
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Leresche, 1970; Wilson et al., 1991). Human disturbance in the form of aircraft or 

visitors caused lowered productivity of cormorant colonies (Kury & Gochfield, 1975), 

a decline in a breeding population of northern gannets in Ontario (Nettleship, 1975), 

and desertion rates of 20%-30% in an Adelie penguin colony (Sladen & Leresche, 

1970). Severe disturbance from noise sources could potentially cause abandonment of 

an entire colony. 

 Other species in this study that may be particularly susceptible to man-made 

noise disturbance are the two species with the most sensitive hearing (the ruddy duck 

and the lesser scaup). These two species of diving duck spend the most time in 

populated areas because of their abundance in coastal waters and inland freshwater 

bodies (Austin et al., 1998; Brua, 2002). Particular attention should be paid to effects 

of noise on these species because of their sensitive hearing and frequent exposure to 

man-made noises such as farming noise, traffic noise, boat noise, and construction.   

All bird species studied spend the majority of their time in coastal areas (with 

the exception of some northern gannets and red-throated loons), within a few 

kilometers of the coastline (Bureau of Ocean Energy Management, 2013).  Man-made 

noise sources (both in-air and underwater) are often concentrated along the coastline, 

such as those associated with coastal development and construction, shipping, and 

recreational boating. In addition, the long-distance migratory behavior of many of 

these species renders their populations especially susceptible to any stressor that may 

impede their migratory progress. All of the species researched migrate from breeding 

areas in Canada and Alaska, as far north as the Arctic Circle, to wintering grounds as 

far south as Florida (Daniel & Savard, 2011). A noise source (or any human 
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disturbance) that causes a bird to alter its migratory route out of avoidance could 

cause increased energy expenditure if birds have to fly further than normal (Drewitt 

& Langston, 2006). To make such a taxing migration, periodic rests at stop-over 

points along the route are critical for survival. Any disruption or displacement by 

noise (in-air or underwater) at these stop-over points can cause already weakened 

birds to endure extra stress and losses in refueling that can affect their chances of 

reaching their wintering grounds (Drewitt & Langston, 2006). While any one of these 

impacts (avoidance of a single noise source, displacement from one foraging area, 

etc.) may not have a population-level effect, the cumulative impacts of aquatic noise, 

along with other human actions, should be considered when assessing migratory bird 

fitness and correlations with population effects (Belisle & St. Clair, 2001; Drewitt & 

Langston, 2006; Masden et al., 2009).  

These results provide the first measurements of underwater hearing in any 

bird. The wide range in diving behavior and physiology across all diving bird species 

suggest the importance of replicating studies like this to include other diving birds. 

Further behavioral, physiological and anatomical investigations should be conducted 

to elucidate the sensitivity and mechanism of hearing in diving birds. This research 

supported the use of both methods to obtain hearing sensitivity measurements in 

diving bird species. Although the ABR did not necessarily provide a reliable measure 

of absolute auditory sensitivity, it allowed for the measurement of bird species that 

are not kept in captivity anywhere. The efficiency and transportability of the ABR 

system make it a very useful tool to take advantage of opportunities in which a wild 

animal is temporarily captured. However, results from this research also emphasize 
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the importance of using psychoacoustic methods to extend our knowledge of 

underwater hearing in animals that are vulnerable to human impacts in many regards.   
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