9,055 research outputs found

    The tipping point: a mathematical model for the profit-driven abandonment of restaurant tipping

    Full text link
    The custom of voluntarily tipping for services rendered has gone in and out of fashion in America since its introduction in the 19th century. Restaurant owners that ban tipping in their establishments often claim that social justice drives their decisions, but we show that rational profit-maximization may also justify the decisions. Here, we propose a conceptual model of restaurant competition for staff and customers, and we show that there exists a critical conventional tip rate at which restaurant owners should eliminate tipping to maximize profit. Because the conventional tip rate has been increasing steadily for the last several decades, our model suggests that restaurant owners may abandon tipping en masse when that critical tip rate is reached.Comment: 14 pages, 5 figures, supplementary material include

    The importance of accurate battery models for power assessment in smart energy systems

    Get PDF
    The smart energy system is characterized by a broader combination of various energy sources and energy storage devices with smart control management and increased attention to optimization for increasing energy efficiency. The fundamental dimension in the smart energy system design is the power assessment of the possible design architecture. This demand imposes a need for accurately tracking the system’s power flow, simulating and validating the system’s behavior, and applying additional optimization and exploration during the design time. Thus, it is evident that simulation is a critical step in the design flow of a smart energy system. One essential element to enable such accurate simulation is the precise model of the power generation and consumption. While sophisticated models for energy sources exist, the power flow in the system does not perfectly match the power drawn from the energy storage devices because the battery, as the primary energy storage device in the smart energy system, has non-ideal discharge characteristics. We propose adopting an elaborate battery model for the smart energy system’s accurate power assessment in this work. We show the importance of battery model accuracy when conducting a power assessment using two different case studies

    3D Imaging of a Phase Object from a Single Sample Orientation Using an Optical Laser

    Full text link
    Ankylography is a new 3D imaging technique, which, under certain circumstances, enables reconstruction of a 3D object from a single sample orientation. Here, we provide a matrix rank analysis to explain the principle of ankylography. We then present an ankylography experiment on a microscale phase object using an optical laser. Coherent diffraction patterns are acquired from the phase object using a planar CCD detector and are projected onto a spherical shell. The 3D structure of the object is directly reconstructed from the spherical diffraction pattern. This work may potentially open the door to a new method for 3D imaging of phase objects in the visible light region. Finally, the extension of ankylography to more complicated and larger objects is suggested.Comment: 22 pages 5 figure

    TRAUMATIC BRAIN INJURY LEADS TO ABERRANT MIGRATION OF ADULT-BORN NEURONS IN THE HIPPOCAMPUS

    Get PDF
    poster abstractTraumatic brain injury (TBI) is the leading cause of death in children and young adults, leading to substantial cognitive impairment, motor dysfunction and epilepsy. There is no effective treatment for these dis-orders. The discovery of neural stem/progenitor cells (NSCs) in the adult brain raises a potentially promising strategy for repairing CNS in-jury.Our previous study showed that TBI promotes NSC proliferation in an attempt to initiate innate repair and/or plasticity mechanisms. However, the spontaneously post-traumatic recovery of hippocampal-related cognitive and memory functions is very limited. Better under-standing of neurogenesis following TBI may provide additional inter-vention to further enhance neurogenesis for successfully repairing the damaged brain following TBI. Although newborn neurons generated from NSCs are continuously added to the brain throughout our life, they must migrate from their birthplace to their appropriate destina-tion to develop into mature neurons. When we tracked the migration of newly generated neurons in the adult hippocampus after TBI, we found that a large percentage of immature neurons migrate pass their normal stopping site at the inner granular cell layer, and misplace in the outer granular cell layer of the hippocampal dentate gyrus. The aberrant migration of adult-born neurons in the hippocampus occurs 3 days after TBI, and lasts for 10 weeks, resulting in a great number of newly generated neurons misplaced in the outer granular layer in the hippocampus. The newborn neurons at the displaced position will not be able to make correct connections with their appropriate targets, and may even make wrong connections with inappropriate nearby tar-gets in the pre-existing neural network. Abnormal migration can cause several diseases including epilepsy. These results suggest that stimu-lation of endogenous adult neural stem cells following TBI might offer new avenues for cell-based therapy. Additional intervention is required to further enhance successful neurogenesis for repairing the damaged brain

    Efficient Photon Coupling from a Diamond Nitrogen Vacancy Centre by Integration with Silica Fibre

    Full text link
    A central goal in quantum information science is to efficiently interface photons with single optical modes for quantum networking and distributed quantum computing. Here, we introduce and experimentally demonstrate a compact and efficient method for the low-loss coupling of a solid-state qubit, the nitrogen vacancy (NV) centre in diamond, with a single-mode optical fibre. In this approach, single-mode tapered diamond waveguides containing exactly one high quality NV memory are selected and integrated on tapered silica fibres. Numerical optimization of an adiabatic coupler indicates that near-unity-efficiency photon transfer is possible between the two modes. Experimentally, we find an overall collection efficiency between 18-40 % and observe a raw single photon count rate above 700 kHz. This integrated system enables robust, alignment-free, and efficient interfacing of single-mode optical fibres with single photon emitters and quantum memories in solids
    • …
    corecore