343 research outputs found

    Theory of pattern-formation of metallic microparticles in poorly conducting liquid

    Full text link
    We develop continuum theory of self-assembly and pattern formation in metallic microparticles immersed in a poorly conducting liquid in DC electric field. The theory is formulated in terms of two conservation laws for the densities of immobile particles (precipitate) and bouncing particles (gas) coupled to the Navier-Stokes equation for the liquid. This theory successfully reproduces correct topology of the phase diagram and primary patterns observed in the experiment [Sapozhnikov et al, Phys. Rev. Lett. v. 90, 114301 (2003)]: static crystals and honeycombs and dynamic pulsating rings and rotating multi-petal vortices.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Swelling-collapse transition of self-attracting walks

    Full text link
    We study the structural properties of self-attracting walks in d dimensions using scaling arguments and Monte Carlo simulations. We find evidence for a transition analogous to the \Theta transition of polymers. Above a critical attractive interaction u_c, the walk collapses and the exponents \nu and k, characterising the scaling with time t of the mean square end-to-end distance ~ t^{2 \nu} and the average number of visited sites ~ t^k, are universal and given by \nu=1/(d+1) and k=d/(d+1). Below u_c, the walk swells and the exponents are as with no interaction, i.e. \nu=1/2 for all d, k=1/2 for d=1 and k=1 for d >= 2. At u_c, the exponents are found to be in a different universality class.Comment: 6 pages, 5 postscript figure

    Velocity Distributions of Granular Gases with Drag and with Long-Range Interactions

    Full text link
    We study velocity statistics of electrostatically driven granular gases. For two different experiments: (i) non-magnetic particles in a viscous fluid and (ii) magnetic particles in air, the velocity distribution is non-Maxwellian, and its high-energy tail is exponential, P(v) ~ exp(-|v|). This behavior is consistent with kinetic theory of driven dissipative particles. For particles immersed in a fluid, viscous damping is responsible for the exponential tail, while for magnetic particles, long-range interactions cause the exponential tail. We conclude that velocity statistics of dissipative gases are sensitive to the fluid environment and to the form of the particle interaction.Comment: 4 pages, 3 figure

    Self-Attracting Walk on Lattices

    Full text link
    We have studied a model of self-attracting walk proposed by Sapozhnikov using Monte Carlo method. The mean square displacement t2ν \sim t^{2\nu} and the mean number of visited sites tk \sim t^{k} are calculated for one-, two- and three-dimensional lattice. In one dimension, the walk shows diffusive behaviour with ν=k=1/2\nu=k=1/2. However, in two and three dimension, we observed a non-universal behaviour, i.e., the exponent ν\nu varies continuously with the strength of the attracting interaction.Comment: 6 pages, latex, 6 postscript figures, Submitted J.Phys.

    Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array

    Full text link
    We present the development of a novel 11328 pixel silicon photomultiplier (SiPM) camera for use with a ground-based Cherenkov telescope with Schwarzschild-Couder optics as a possible medium-sized telescope for the Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower images with more than twice the optical resolution of cameras that are used in current Cherenkov telescopes. Advantages of the higher resolution will be a better event reconstruction yielding improved background suppression and angular resolution of the reconstructed gamma-ray events, which is crucial in morphology studies of, for example, Galactic particle accelerators and the search for gamma-ray halos around extragalactic sources. Packing such a large number of pixels into an area of only half a square meter and having a fast readout directly attached to the back of the sensors is a challenging task. For the prototype camera development, SiPMs from Hamamatsu with through silicon via (TSV) technology are used. We give a status report of the camera design and highlight a number of technological advancements that made this development possible.Comment: 8 pages, 5 figures, In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Cavitation clouds created by shock scattering from bubbles during histotripsy

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98656/1/JAS001888.pd

    A hysteresis model with dipole interaction: one more devil-staircase

    Full text link
    Magnetic properties of 2D systems of magnetic nanoobjects (2D regular lattices of the magnetic nanoparticles or magnetic nanostripes) are considered. The analytical calculation of the hysteresis curve of the system with interaction between nanoobjects is provided. It is shown that during the magnetization reversal system passes through a number of metastable states. The kinetic problem of the magnetization reversal was solved for three models. The following results have been obtained. 1) For 1D system (T=0) with the long-range interaction with the energy proportional to rpr^{-p}, the staircase-like shape of the magnetization curve has self-similar character. The nature of the steps is determined by interplay of the interparticle interaction and coercivity of the single nanoparticle. 2) The influence of the thermal fluctuations on the kinetic process was examined in the framework of the nearest-neighbor interaction model. The thermal fluctuations lead to the additional splitting of the steps on the magnetization curve. 3) The magnetization curve for system with interaction and coercivity dispersion was calculated in mean field approximation. The simple method to experimentally distinguish the influence of interaction and coercivity dispersion on the magnetization curve is suggested.Comment: 22 pages, 8 figure

    Cellular Models for River Networks

    Full text link
    A cellular model introduced for the evolution of the fluvial landscape is revisited using extensive numerical and scaling analyses. The basic network shapes and their recurrence especially in the aggregation structure are then addressed. The roles of boundary and initial conditions are carefully analyzed as well as the key effect of quenched disorder embedded in random pinning of the landscape surface. It is found that the above features strongly affect the scaling behavior of key morphological quantities. In particular, we conclude that randomly pinned regions (whose structural disorder bears much physical meaning mimicking uneven landscape-forming rainfall events, geological diversity or heterogeneity in surficial properties like vegetation, soil cover or type) play a key role for the robust emergence of aggregation patterns bearing much resemblance to real river networks.Comment: 7 pages, revtex style, 14 figure
    corecore