244 research outputs found
Surface engineering and vapor phase technologies for coating and functionalizing complex objects and small particles
The requirements for materials performance in different areas of application continues to face increased technological, economical and environmental challenges, while considering ever improving materials mechanical, optical, electrical, electrochemical and other functional properties and their combination (multifuntionality). This opens new and exciting opportunities for further development of surface engineering methodologies that allow one to fabricate functional coatings and functionalized surfaces with tailored characteristics. Further progress in this field is only possible when considering a holistic approach in which the desired functions are well understood and closely linked with the materials microstructure and the detailed physical and chemical reactions involved in the processes.
This presentation will describe the progress in surface engineering of materials using chemical vapor deposition, physical vapor deposition, and plasma-enhanced chemical vapor deposition of functional coatings. It will particularly focus on the following aspects:
a) Effect of surface reactions on the evolution of the coating microstructure during the film growth in different pressure regimes ranging from vacuum to the atmospheric pressure.
b) Relationship between the microstructure and the film functional characteristics suitable for different areas of application including optics, aerospace, energy, manufacturing and others.
c) Application of the vapor phase deposition techniques to coat complex objects including small particles. The latter one will be illustrated by our recent results on the development of the fluidized bed chemical vapor deposition process.
Throughout the presentation, we demonstrate the need for advanced diagnostic techniques suitable for the process and materials control on the nanoscale
Conformal multilayer coatings on fine silica microspheres by atmospheric pressure fluidized bed chemical vapor deposition
Surface properties of fine particles can be tuned through deposition of films or coatings. This approach is an area of science and technology of interest in numerous fields such as catalysis, energy production, microelectronics, optoelectronics, etc. Surface coating of powders can be applied by a dry technique (i.e., the use of a reactive gas phase), so-called chemical vapor deposition (CVD). However, conventional CVD processes cannot provide an efficient conformal deposition while fine particles are considered as substrates. This is due to the fact that mixing of particles, in such a way that their entire surface is exposed to the reactive gas phase, is rather complicated and not often addressed. Therefore, fluidization, as a recognized particle treatment process which meets the requirement of gas–solid contact, can be associated with the gas–solid reactions that are often used in the context of various CVD processes. The combination of such mature techniques, namely fluidized bed chemical vapor deposition (FBCVD) leads to innovative, flexible and cost-effective particle treatment processes [1].
In the present investigation, soda lime spherical particles with a particle size of ca. 27 µm were used as the substrate. Single- and multi-layer depositions composed of TiO2 and SiO2 films were applied to the surface of the particles by the FBCVD at atmospheric pressure, while employing, respectively, titanium and silicon tetrachloride as precursors, and using water as an oxidation agent. TiO2 and SiO2 films were deposited at 300oC and ambient temperatures, respectively.
Please click Additional Files below to see the full abstract
Recommended from our members
Omega-3 polyunsaturated fatty acids preserve retinal function in type 2 diabetic mice
Objective: Diabetic retinopathy (DR) is associated with hyperglycemia-driven microvascular pathology and neuronal compromise in the retina. However, DR is also linked to dyslipidemia. As omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are protective in proliferative retinopathy, we investigated the capacity of ω-3PUFAs to preserve retinal function in a mouse model of type 2 diabetes mellitus (T2DM). Design: Male leptin-receptor-deficient (db/db) mice were maintained for 22 weeks (4 weeks–26 weeks of life) on calorically and compositionally matched diets, except for 2% enrichment in either ω-3 or ω-6PUFAs. Visual function was assessed at 9, 14 and 26 weeks by electroretinography. Retinal capillary and neuronal integrity, as well as glucose challenge responses, were assessed on each diet. Results: The ω-3PUFA diet significantly preserved retinal function in the mouse model of T2DM to levels similar to those observed in nondiabetic control mice on normal chow. Conversely, retinal function gradually deteriorated in db/db mice on a ω-6PUFA-rich diet. There was also an enhanced ability of ω-3PUFA-fed mice to respond to glucose challenge. The protection of visual function appeared to be independent of cytoprotective or anti-inflammatory effects of ω-3PUFAs. Conclusion: This study identifies beneficial effects of dietary ω-3PUFAs on visual function in T2DM. The data are consistent with dyslipidemia negatively impacting retinal function. As ω-3PUFA lipid dietary interventions are readily available, safe and inexpensive, increasing ω-3PUFA intake in diabetic patients may slow the progression of vision loss in T2DM
Inborn and acquired metabolic defects in cancer
The observation that altered metabolism is the fundamental cause of cancer was made by Otto Warburg nearly a century ago. However, the subsequent identification of oncogenes and tumor suppressor genes has displaced Warburg's theory pointing towards genetic aberrations as the underlining cause of cancer. Nevertheless, in the last decade, cancer-associated mutations have been identified in genes coding for tricarboxylic acid cycle (TCA cycle, also known as Krebs cycle) and closely related enzymes that have essential roles in cellular metabolism. These observations have revived interest in Warburg's hypothesis and prompted a flurry of functional studies in the hope of gaining mechanistic insight into the links between mitochondrial dysfunction, metabolic alterations, and cancer. In this review, we discuss the potential pro-oncogenic signaling role of some TCA cycle metabolites and their derivatives (oncometabolites). In particular, we focus on their effects on dioxygenases, a family of oxygen and α-ketoglutarate-dependent enzymes that control, among other things, the levels and activity of the hypoxia-inducible transcription factors and the activity of DNA and histone demethylases
The EYA Tyrosine Phosphatase Activity Is Pro-Angiogenic and Is Inhibited by Benzbromarone
Eyes Absents (EYA) are multifunctional proteins best known for their role in organogenesis. There is accumulating evidence that overexpression of EYAs in breast and ovarian cancers, and in malignant peripheral nerve sheath tumors, correlates with tumor growth and increased metastasis. The EYA protein is both a transcriptional activator and a tyrosine phosphatase, and the tyrosine phosphatase activity promotes single cell motility of mammary epithelial cells. Since EYAs are expressed in vascular endothelial cells and cell motility is a critical feature of angiogenesis we investigated the role of EYAs in this process. Using RNA interference techniques we show that EYA3 depletion in human umbilical vein endothelial cells inhibits transwell migration as well as Matrigel-induced tube formation. To specifically query the role of the EYA tyrosine phosphatase activity we employed a chemical biology approach. Through an experimental screen the uricosuric agents Benzbromarone and Benzarone were found to be potent EYA inhibitors, and Benzarone in particular exhibited selectivity towards EYA versus a representative classical protein tyrosine phosphatase, PTP1B. These compounds inhibit the motility of mammary epithelial cells over-expressing EYA2 as well as the motility of endothelial cells. Furthermore, they attenuate tubulogenesis in matrigel and sprouting angiogenesis in the ex vivo aortic ring assay in a dose-dependent fashion. The anti-angiogenic effect of the inhibitors was also demonstrated in vivo, as treatment of zebrafish embryos led to significant and dose-dependent defects in the developing vasculature. Taken together our results demonstrate that the EYA tyrosine phosphatase activity is pro-angiogenic and that Benzbromarone and Benzarone are attractive candidates for repurposing as drugs for the treatment of cancer metastasis, tumor angiogenesis, and vasculopathies
Long-Term Gene Therapy Causes Transgene-Specific Changes in the Morphology of Regenerating Retinal Ganglion Cells
Recombinant adeno-associated viral (rAAV) vectors can be used to introduce neurotrophic genes into injured CNS neurons, promoting survival and axonal regeneration. Gene therapy holds much promise for the treatment of neurotrauma and neurodegenerative diseases; however, neurotrophic factors are known to alter dendritic architecture, and thus we set out to determine whether such transgenes also change the morphology of transduced neurons. We compared changes in dendritic morphology of regenerating adult rat retinal ganglion cells (RGCs) after long-term transduction with rAAV2 encoding: (i) green fluorescent protein (GFP), or (ii) bi-cistronic vectors encoding GFP and ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF) or growth-associated protein-43 (GAP43). To enhance regeneration, rats received an autologous peripheral nerve graft onto the cut optic nerve of each rAAV2 injected eye. After 5–8 months, RGCs with regenerated axons were retrogradely labeled with fluorogold (FG). Live retinal wholemounts were prepared and GFP positive (transduced) or GFP negative (non-transduced) RGCs injected iontophoretically with 2% lucifer yellow. Dendritic morphology was analyzed using Neurolucida software. Significant changes in dendritic architecture were found, in both transduced and non-transduced populations. Multivariate analysis revealed that transgenic BDNF increased dendritic field area whereas GAP43 increased dendritic complexity. CNTF decreased complexity but only in a subset of RGCs. Sholl analysis showed changes in dendritic branching in rAAV2-BDNF-GFP and rAAV2-CNTF-GFP groups and the proportion of FG positive RGCs with aberrant morphology tripled in these groups compared to controls. RGCs in all transgene groups displayed abnormal stratification. Thus in addition to promoting cell survival and axonal regeneration, vector-mediated expression of neurotrophic factors has measurable, gene-specific effects on the morphology of injured adult neurons. Such changes will likely alter the functional properties of neurons and may need to be considered when designing vector-based protocols for the treatment of neurotrauma and neurodegeneration
Omega-3 polyunsaturated fatty acid supplementation versus placebo on vascular health, glycaemic control, and metabolic parameters in people with type 1 diabetes: a randomised controlled preliminary trial
Background:
The role of omega-3 polyunsaturated fatty acids (n-3PUFA), and the potential impact of n-3PUFA supplementation, in the treatment and management of type 1 diabetes (T1D) remains unclear and controversial. Therefore, this study aimed to examine the efficacy of daily high-dose-bolus n-3PUFA supplementation on vascular health, glycaemic control, and metabolic parameters in subjects with T1D.
Methods:
Twenty-seven adults with T1D were recruited to a 6-month randomised, double-blind, placebo-controlled trial. Subjects received either 3.3 g/day of encapsulated n-3PUFA or encapsulated 3.0 g/day corn oil placebo (PLA) for 6-months, with follow-up at 9-months after 3-month washout. Erythrocyte fatty acid composition was determined via gas chromatography. Endpoints included inflammation-associated endothelial biomarkers (vascular cell adhesion molecule-1 [VCAM-1], intercellular adhesion molecule-1 [ICAM-1], E-selectin, P-selectin, pentraxin-3, vascular endothelial growth factor [VEGF]), and their mediator tumor necrosis factor alpha [TNFα] analysed via immunoassay, vascular structure (carotid intima-media thickness [CIMT]) and function (brachial artery flow mediated dilation [FMD]) determined via ultrasound technique, blood pressure, glycosylated haemoglobin (HbA1c), fasting plasma glucose (FPG), and postprandial metabolism.
Results:
Twenty subjects completed the trial in full. In the n-3PUFA group, the mean ± SD baseline n-3PUFA index of 4.93 ± 0.94% increased to 7.67 ± 1.86% (P  0.05).
Conclusions:
This study indicates that daily high-dose-bolus of n-3PUFA supplementation for 6-months does not improve vascular health, glucose homeostasis, or metabolic parameters in subjects with T1D. The findings from this preliminary RCT do not support the use of therapeutic n-3PUFA supplementation in the treatment and management of T1D and its associated complications.
Trial Registration ISRCTN, ISRCTN40811115. Registered 27 June 2017, http://www.isrctn.com/ISRCTN40811115
- …