2 research outputs found

    Cohesive collisions of particles in liquid media studied by CFD-DEM, video tracking, and Positron Emission Particle Tracking

    Get PDF
    This paper investigates the cohesive collision of ice in an oil phase at temperatures ranging from −15.7 °C to −0.3 °C. The new information on the coefficient of restitution (COR) was obtained using three different velocity measurement methods: high-speed experimental video recording, Positron Emission Particle Tracking (PEPT), and numerical simulations. A new type of PEPT tracer was developed for the experiments. The COR values were in the interval 0.57...0.82, with a maximum at around −10 °C. The CFD-DEM coupled approach was applied to reproduce experiments with an ice particle drop and its collision with an inclined ice surface in a decane. The particle–wall interaction is modeled using commercial software, considering particle cohesion, particle size, and shape. CFD-DEM predicted the COR with an average deviation 10% from the experimental data. The numerical model’s results agree with the experiments, demonstrating that the CFD-DEM method is suitable for describing multiphase cohesive interactions

    CFD-DEM model of plugging in flow with cohesive particles

    No full text
    Abstract Plugging in flows with cohesive particles is crucial in many industrial and real-life applications such as hemodynamics, water distribution, and petroleum flow assurance. Although probabilistic models for plugging risk estimation are presented in the literature, multiple details of the process remain unclear. In this paper, we present a CFD-DEM model of plugging validated against several experimental benchmarks. Using the simulations, we consider the process of plugging in a slurry of ice in decane, focusing on inter-particle collisions and plugging dynamics. We conduct a parametric study altering the Reynolds number (3000...9000), particle concentration (1.6...7.3%), and surface energy (21...541 mJ/m 2^2 2 ). We note the process possesses complex non-linear behaviour for the cases where particle-wall adhesion reduces by more than 20% relative to inter-particle cohesion. Finally, we demonstrate how the simulation results match the flow maps based on the third-party experiments
    corecore