8 research outputs found

    Inositol pyrophosphate profiling reveals regulatory roles of IP6K2-dependent enhanced IP7 metabolism in the enteric nervous system

    Get PDF
    Inositol pyrophosphates regulate diverse physiological processes; to better understand their functional roles, assessing their tissue-specific distribution is important. Here, we profiled inositol pyrophosphate levels in mammalian organs using an originally designed liquid chromatography-mass spectrometry (LC-MS) protocol and discovered that the gastrointestinal tract (GIT) contained the highest levels of diphosphoinositol pentakisphosphate (IP7) and its precursor inositol hexakisphosphate (IP6). Although their absolute levels in the GIT are diet dependent, elevated IP7 metabolism still exists under dietary regimens devoid of exogenous IP7. Of the major GIT cells, enteric neurons selectively express the IP7-synthesizing enzyme IP6K2. We found that IP6K2-knockout mice exhibited significantly impaired IP7 metabolism in the various organs including the proximal GIT. In addition, our LC-MS analysis displayed that genetic ablation of IP6K2 significantly impaired IP7 metabolism in the gut and duodenal muscularis externa containing myenteric plexus. Whole transcriptome analysis of duodenal muscularis externa further suggested that IP6K2 inhibition significantly altered expression levels of the gene sets associated with mature neurons, neural progenitor/stem cells, and glial cells, as well as of certain genes modulating neuronal differentiation and functioning, implying critical roles of the IP6K2-IP7 axis in developmental and functional regulation of the enteric nervous system. These results collectively reveal an unexpected role of mammalian IP7-a highly active IP6K2-IP7 pathway is conducive to the enteric nervous system

    Data_Sheet_1_Elevation of inositol pyrophosphate IP7 in the mammalian spinal cord of amyotrophic lateral sclerosis.pdf

    No full text
    BackgroundAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder associated with progressive impairment of spinal motor neurons. Continuous research endeavor is underway to fully understand the molecular mechanisms associating with this disorder. Although several studies have implied the involvement of inositol pyrophosphate IP7 in ALS, there is no direct experimental evidence proving this notion. In this study, we analyzed inositol pyrophosphate IP7 and its precursor IP6 in the mouse and human ALS biological samples to directly assess whether IP7 level and/or its metabolism are altered in ALS disease state.MethodsWe used a liquid chromatography-mass spectrometry (LC-MS) protocol originally-designed for mammalian IP6 and IP7 analysis. We measured the abundance of these molecules in the central nervous system (CNS) of ALS mouse model SOD1(G93A) transgenic (TG) mice as well as postmortem spinal cord of ALS patients. Cerebrospinal fluid (CSF) and peripheral blood mononuclear cells (PBMCs) from ALS patients were also analyzed to assess if IP7 status in these biofluids is associated with ALS disease state.ResultsSOD1(G93A) TG mice showed significant increase of IP7 level in the spinal cord compared with control mice at the late stage of disease progression, while its level in cerebrum and cerebellum remains constant. We also observed significantly elevated IP7 level and its product-to-precursor ratio (IP7/IP6) in the postmortem spinal cord of ALS patients, suggesting enhanced enzymatic activity of IP7-synthesizing kinases in the human ALS spinal cord. In contrast, human CSF did not contain detectable level of IP6 and IP7, and neither the IP7 level nor the IP7/IP6 ratio in human PBMCs differentiated ALS patients from age-matched healthy individuals.ConclusionBy directly analyzing IP7 in the CNS of ALS mice and humans, the findings of this study provide direct evidence that IP7 level and/or the enzymatic activity of IP7-generating kinases IP6Ks are elevated in ALS spinal cord. On the other hand, this study also showed that IP7 is not suitable for biofluid-based ALS diagnosis. Further investigation is required to elucidate a role of IP7 in ALS pathology and utilize IP7 metabolism on the diagnostic application of ALS.</p
    corecore