2 research outputs found

    Screening of yeasts capable of producing cellulase-free xylanase

    Get PDF
    Xylanases have largely been obtained from filamentous fungi and bacteria; few studies have investigated the production of this enzyme by yeasts. The aim of this study was to isolate yeasts from different sources, such as vegetables, cereal grains, fruits, and agro-industrial waste and to obtain yeasts capable of producing celulase-free xylanase. Samples were enriched using yeast malt broth, and yeasts were isolated on Wallerstein nutrient agar. In all, 119 yeast strains were isolated and evaluated in terms of their ability to degrade xylan, which was found in the medium by using agar degradation halos, the basis of this polysaccharide, and Congo red dye. Selected microorganisms were grown in complex medium and the enzymatic activities of endo-xylanase, β-xylosidase, carboxymetilcellulase, and filter paper cellulose were determined over 96 h of cultivation; the pH and biomass concentration were also evaluated. The yeast strain 18Y, which was isolated from chicory and later identified as Cryptococcus laurentii, showed the highest endo-xylanase activity (2.7 U.mL-1). This strain had the ability to produce xylanase with low levels of cellulase production (both CMCase [0.11 U.mL-1] and FPase [0.10 U.mL-1]). This result gives this strain great biotechnological potential since this enzyme can be used for industrial pulp and paper bleaching.Key words: Cryptococcus laurentii, endo-xylanase, xylan

    Pre-screening of filamentous fungi isolated from a contaminated site in Southern Brazil for bioaugmentation purposes

    Get PDF
    Four Aspergillus sp. strains were isolated from contaminated soil in Rio Grande, Southern Brazil. The biodegradation potential of these strains was evaluated using a simple method involving the determination of colony growth rates on plates containing a specific hydrocarbon or petroleumderivative as the only carbon source. The LEBM1 strain presented a high tolerance level to BTX. It was the only strain capable of growth on all the media, with growth rates varying from 1.3 to 2.2 mm/day. The LEBM2 strain presented the potential for phenol degradation, while the LEBM3 strain could be used for gasoline, diesel oil, hexane and chlorobenzene
    corecore