18 research outputs found

    InGaAs/InP SPAD with Monolithically Integrated Zinc-Diffused Resistor

    Get PDF
    Afterpulsing and optical crosstalk are significant performance limitations for applications employing near-infrared single-photon avalanche diodes (SPADs). In this paper, we describe an InGaAs/InP SPAD with monolithically integrated resistor that is fully compatible with the planar fabrication process and provides a significant reduction of the avalanche charge and, thus, of afterpulsing and optical crosstalk. In order to have a fast SPAD reset (<50 ns), we fabricated quenching resistors ranging from 10 to 200 k\Ω, smaller than what is available in the literature. The resistor, fabricated with the zinc diffusions already used for avoiding premature edge-breakdown, promptly reduces the avalanche current to a low value ∼ 100~ μ A in less than 1 ns, while an active circuit completes the quenching and enforces a well-defined hold-off. The proposed mixed-quenching approach guarantees an avalanche charge reduction of more than 20 times compared with similar plain SPADs, enough to reduce the hold-off time down to 1 μ s. Finally, a compact single-photon counting module based on this detector and featuring 70-ps photon-timing jitter is presented

    Optical Crosstalk in InGaAs/InP SPAD Array: Analysis and Reduction with FIB-Etched Trenches

    Get PDF
    This letter describes the reduction of optical crosstalk by means of focused ion beam-etched trenches in InGaAs/InP single-photon avalanche diode arrays. Platinum-filled trenches have been fabricated in a linear array in order to limit the direct optical crosstalk between neighboring pixels. Experimental measurements prove that optical crosstalk has been reduced by ∼60 % thanks to a strong suppression of direct optical paths. An optical model is introduced in order to describe the main contributions to crosstalk and to validate measurements

    Single-Photon Avalanche Diodes in a 0.16 μm BCD Technology With Sharp Timing Response and Red-Enhanced Sensitivity

    Get PDF
    CMOS single-photon avalanche diodes (SPADs) have recently become an emerging imaging technology for applications requiring high sensitivity and high frame-rate in the visible and near-infrared range. However, a higher photon detection efficiency (PDE), particularly in the 700-950 nm range, is highly desirable for many growing markets, such as eye-safe three-dimensional imaging (LIDAR). In this paper, we report the design and characterization of SPADs fabricated in a 0.16 mu m BCD (Bipolar-CMOS-DMOS) technology. The overall detection performance is among the best reported in the literature: 1) PDE of 60% at 500 nm wavelength and still 12% at 800 nm; 2) very low dark count rate of < 0.2 cps/mu m(2) (in counts per second per unit area); 3) < 1% afterpulsing probability with 50 ns dead-time; and 4) temporal response with 30 ps full width at half-maximum and less than 50 ps diffusion tail time constant

    600 km repeater-like quantum communications with dual-band stabilisation

    Full text link
    Twin-field (TF) quantum key distribution (QKD) could fundamentally alter the rate-distance relationship of QKD, offering the scaling of a single-node quantum repeater. Although recent experiments have demonstrated the potential of TF-QKD, formidable challenges remain for its real world use. In particular, new methods are needed to extend both the distance beyond 500 km and key rates above current milli-bit per second values. Previous demonstrations have required intense stabilisation signals at the same wavelength as the quantum channel, thereby unavoidably generating noise due to Rayleigh scattering that limits the distance and bit rate. Here, we introduce a novel dual band stabilisation scheme based on wavelength division multiplexing that allows us to circumvent past limitations. An intense stabilisation signal that is spectrally isolated from the quantum channel is used to reduce the phase drift by three orders of magnitude, while a second, much weaker reference at the quantum wavelength locks the channel phase to a predetermined value. With this strategy, we realise a low noise implementation suitable for all the variants of TF-QKD protocols proposed so far and capable of generating real strings of bits for the first time. The setup provides repeater-like key rates over record communication distances of 555 km and 605 km in the finite-size and asymptotic regimes, respectively, and increases the secure key rate at long distance by two orders of magnitude to values of practical significance.Comment: 14 pages, 5 figures. Methods and supplementary materials are include

    InGaAs/InP single-photon detector with low noise, low timing jitter and high count rate

    Get PDF
    We present a new InGaAs/InP Single-Photon Avalanche Diode (SPAD) with high detection efficiency and low noise, which has been employed in a sinusoidal-gated setup to achieve very low afterpulsing probability and high count rate. The new InGaAs/InP SPAD has lower noise compared to previous generations thanks to the improvement of Zinc diffusion conditions and the optimization of the vertical structure. A detector with 25 μm active-area diameter, operated in gated-mode with ON time of tens of nanoseconds, has a dark count rate of few kilo-counts per second at 225 K and 5 V of excess bias, 30% photon detection efficiency at 1550 nm and a timing jitter of less than 90 ps (FWHM) at 7 V of excess bias. In order to reduce significantly the afterpulsing probability, these detectors were operated with a sinusoidal gate at 1.3 GHz. The extremely short gate ON time (less than 200 ps) reduces the charge flowing through the junction, thus reducing the number of trapped carriers and, eventually, lowering the afterpulsing probability. The resulting detection system achieves a maximum count rate higher than 650 Mcount/s with an afterpulsing probability of about 1.5%, a photon detection efficiency greater than 30% at 1550 nm and a temporal resolution of less than 90 ps (FWHM)

    600-km repeater-like quantum communications with dual-band stabilization

    Get PDF
    Twin-field (TF) quantum key distribution (QKD) fundamentally alters the rate-distance relationship of QKD, offering the scaling of a single-node quantum repeater. Although recent experiments have demonstrated the new opportunities for secure long-distance communications allowed by TF-QKD, formidable challenges remain to unlock its true potential. Previous demonstrations have required intense stabilization signals at the same wavelength as the quantum signals, thereby unavoidably generating Rayleigh scattering noise that limits the distance and bit rate. Here, we introduce a dual-band stabilization scheme that overcomes past limitations and can be adapted to other phase-sensitive single-photon applications. Using two different optical wavelengths multiplexed together for channel stabilization and protocol encoding, we develop a setup that provides repeater-like key rates over communication distances of 555 km and 605 km in the finite-size and asymptotic regimes respectively and increases the secure key rate at long distance by two orders of magnitude to values of practical relevance

    Real-time operation of a multi-rate, multi-protocol quantum key distribution transmitter

    Get PDF
    Quantum key distribution (QKD) is the best candidate for securing communications against attackers, who may in the future exploit quantum-enhanced computational powers to break classical encryption. As such, new challenges are arising from our need for large-scale deployment of QKD systems. In a realistic scenario, transmitting and receiving devices from different vendors should be able to communicate with each other without the need for matching hardware. Therefore, practical deployment of QKD would require hardware capable of adapting to different protocols and clock rates. Here, we address this challenge by presenting a multi-rate, multi-protocol QKD transmitter linked to a correspondingly adaptable QKD receiver. The flexibility of the transmitter, achieved by optical injection locking, allows us to connect it with two receivers with inherently different clock rates. Furthermore, we demonstrate the multi-protocol operation of our transmitter, communicating with receiving parties employing different decoding circuits

    Charge Persistence in InGaAs/InP Single-Photon Avalanche Diodes

    Get PDF
    We present a detailed characterization and modeling of the charge persistence effect that impacts InGaAs/InP single-photon avalanche diodes. Such phenomenon is due to holes that pile-up at the heterointerface outside the active area and has two main consequences: 1) higher noise (equivalent to higher dark count rate), not decreasing as expected at low temperature and 2) possible distortion of the acquired time-resolved waveforms (due to such signal-correlated noise). We propose a model that describes: 1) the generation of holes at the detector periphery in the InGaAs layer; 2) their accumulation at the heterointerface; 3) their subsequent diffusion toward the active area within the InGaAs layer; and 4) their resulting drift to the high field depleted InP region, where the unwelcome spurious avalanche is eventually triggered. We support our model by detailed experimental measurements and simulations. Finally, we propose simple approaches for designing detectors less sensitive to this type of noise
    corecore