14 research outputs found

    A ferritin-based COVID-19 nanoparticle vaccine that elicits robust, durable, broad-spectrum neutralizing antisera in non-human primates

    Get PDF
    While the rapid development of COVID-19 vaccines has been a scientific triumph, the need remains for a globally available vaccine that provides longer-lasting immunity against present and future SARS-CoV-2 variants of concern (VOCs). Here, we describe DCFHP, a ferritin-based, protein-nanoparticle vaccine candidate that, when formulated with aluminum hydroxide as the sole adjuvant (DCFHP-alum), elicits potent and durable neutralizing antisera in non-human primates against known VOCs, including Omicron BQ.1, as well as against SARS-CoV-1. Following a booster ~one year after the initial immunization, DCFHP-alum elicits a robust anamnestic response. To enable global accessibility, we generated a cell line that can enable production of thousands of vaccine doses per liter of cell culture and show that DCFHP-alum maintains potency for at least 14 days at temperatures exceeding standard room temperature. DCFHP-alum has potential as a once-yearly (or less frequent) booster vaccine, and as a primary vaccine for pediatric use including in infants

    Leukemia Proto-Oncoprotein MLL Forms a SET1-Like Histone Methyltransferase Complex with Menin To Regulate Hox Gene Expression

    No full text
    MLL (for mixed-lineage leukemia) is a proto-oncogene that is mutated in a variety of human leukemias. Its product, a homolog of Drosophila melanogaster trithorax, displays intrinsic histone methyltransferase activity and functions genetically to maintain embryonic Hox gene expression. Here we report the biochemical purification of MLL and demonstrate that it associates with a cohort of proteins shared with the yeast and human SET1 histone methyltransferase complexes, including a homolog of Ash2, another Trx-G group protein. Two other members of the novel MLL complex identified here are host cell factor 1 (HCF-1), a transcriptional coregulator, and the related HCF-2, both of which specifically interact with a conserved binding motif in the MLL(N) (p300) subunit of MLL and provide a potential mechanism for regulating its antagonistic transcriptional properties. Menin, a product of the MEN1 tumor suppressor gene, is also a component of the 1-MDa MLL complex. Abrogation of menin expression phenocopies loss of MLL and reveals a critical role for menin in the maintenance of Hox gene expression. Oncogenic mutant forms of MLL retain an ability to interact with menin but not other identified complex components. These studies link the menin tumor suppressor protein with the MLL histone methyltransferase machinery, with implications for Hox gene expression in development and leukemia pathogenesis

    B-cell development fails in the absence of the Pbx1 proto-oncogene

    No full text
    Pbx1, a homeodomain transcription factor that was originally identified as the product of a proto-oncogene in acute pre-B–cell leukemia, is a global regulator of embryonic development. However, embryonic lethality in its absence has prevented an assessment of its role in B-cell development. Here, using Rag1-deficient blastocyst complementation assays, we demonstrate that Pbx1 null embryonic stem (ES) cells fail to generate common lymphoid progenitors (CLPs) resulting in a complete lack of B and NK cells, and a partial impairment of T-cell development in chimeric mice. A critical role for Pbx1 was confirmed by rescue of B-cell development from CLPs following restoration of its expression in Pbx1-deficient ES cells. In adoptive transfer experiments, B-cell development from Pbx1-deficient fetal liver cells was also severely compromised, but not erased, since transient B lymphopoiesis was detected in Rag-deficient recipients. Conditional inactivation of Pbx1 in pro-B (CD19+) cells and thereafter revealed that Pbx1 is not necessary for B-cell development to proceed from the pro-B–cell stage. Thus, Pbx1 critically functions at a stage between hematopoietic stem cell development and B-cell commitment and, therefore, is one of the earliest-acting transcription factors that regulate de novo B-lineage lymphopoiesis

    The TALE homeodomain protein Pbx2 is not essential for development and long-term survival

    No full text
    Pbx2 is one of four mammalian genes that encode closely related TALE homeodomain proteins, which serve as DNA binding partners for a subset of Hox transcription factors. The expression and contributions of Pbx2 to mammalian development remain undefined, in contrast to the essential roles recently established for family members Pbx1 and Pbx3. Here we report that Pbx2 is widely expressed during embryonic development, particularly in neural and epithelial tissues during late gestation. Despite wide Pbx2 expression, mice homozygous mutant for Pbx2 are born at the expected Mendelian frequencies and exhibit no detectable abnormalities in development and organogenesis or reduction of long-term survival. The lack of an apparent phenotype in Pbx2 -/- mice likely reflects functional redundancy, since the Pbx2 protein is present at considerably lower levels than comparable isoforms of Pbx1 and/or Pbx3 in embryonic tissues. In postnatal bone marrow and thymus, however, Pbx2 is the predominant high-molecular-weight (NW)-isoform Pbx protein detectable by immunoblotting. Nevertheless, the absence of Pbx2 has no measurable effect on steady-state hematopoiesis or immune function in adult mice, suggesting possible compensation by low-MW-isoform Pbx proteins present in these tissues. We conclude that the roles of Pbx2 in murine embryonic development, organogenesis, hematopoiesis, immune responses, and long-term survival are not essential

    Formulation development and comparability studies with an aluminum-salt adjuvanted SARS-CoV-2 Spike ferritin nanoparticle vaccine antigen produced from two different cell lines (Dataset)

    No full text
    The development of safe and effective second-generation COVID-19 vaccines to improve affordability and storage stability requirements remains a high priority to expand global coverage. In this report, we describe formulation development and comparability studies with a self-assembled SARS-CoV-2 spike ferritin nanoparticle vaccine antigen (called DCFHP), when produced in two different cell lines and formulated with an aluminum-salt adjuvant (Alhydrogel, AH). Varying levels of phosphate buffer altered the extent and strength of antigen-adjuvant interactions, and these formulations were evaluated for their (1) in vivo performance in mice and (2) in vitro stability profiles. Unadjuvanted DCFHP produced minimal immune responses while AH-adjuvanted formulations elicited greatly enhanced pseudovirus neutralization titers independent of ~100%, ~40% or ~10% of the DCFHP antigen adsorbed to AH. These formulations differed, however, in their in vitro stability properties as determined by biophysical studies and a competitive ELISA for measuring ACE2 receptor binding of AH-bound antigen. Interestingly, after one month of 4ÂșC storage, small increases in antigenicity with concomitant decreases in the ability to desorb the antigen from the AH were observed. Finally, we performed a comparability assessment of DCFHP antigen produced in Expi293 and CHO cells, which displayed expected differences in their N-linked oligosaccharide profiles. Despite consisting of different DCFHP glycoforms, these two preparations were highly similar in their key quality attributes including molecular size, structural integrity, conformational stability, binding to ACE2 receptor and mouse immunogenicity profiles. Taken together, these studies support future preclinical and clinical development of an AH-adjuvanted DCFHP vaccine candidate produced in CHO cells

    Dominant Role for Regulatory T Cells in Protecting Females Against Pulmonary Hypertension

    No full text
    RationalePulmonary arterial hypertension (PH) is a life-threatening condition associated with immune dysregulation and abnormal regulatory T cell (Treg) activity, but it is currently unknown whether and how abnormal Treg function differentially affects males and females.ObjectiveTo evaluate whether and how Treg deficiency differentially affects male and female rats in experimental PH.Methods and resultsMale and female athymic rnu/rnu rats, lacking Tregs, were treated with the VEGFR2 (vascular endothelial growth factor receptor 2) inhibitor SU5416 or chronic hypoxia and evaluated for PH; some animals underwent Treg immune reconstitution before SU5416 administration. Plasma PGI2 (prostacyclin) levels were measured. Lung and right ventricles were assessed for the expression of the vasoprotective proteins COX-2 (cyclooxygenase 2), PTGIS (prostacyclin synthase), PDL-1 (programmed death ligand 1), and HO-1 (heme oxygenase 1). Inhibitors of these pathways were administered to athymic rats undergoing Treg immune reconstitution. Finally, human cardiac microvascular endothelial cells cocultured with Tregs were evaluated for COX-2, PDL-1, HO-1, and ER (estrogen receptor) expression, and culture supernatants were assayed for PGI2 and IL (interleukin)-10. SU5416-treatment and chronic hypoxia produced more severe PH in female than male athymic rats. Females were distinguished by greater pulmonary inflammation, augmented right ventricular fibrosis, lower plasma PGI2 levels, decreased lung COX-2, PTGIS, HO-1, and PDL-1 expression and reduced right ventricular PDL-1 levels. In both sexes, Treg immune reconstitution protected against PH development and raised levels of plasma PGI2 and cardiopulmonary COX-2, PTGIS, PDL-1, and HO-1. Inhibiting COX-2, HO-1, and PD-1 (programmed death 1)/PDL-1 pathways abrogated Treg protection. In vitro, human Tregs directly upregulated endothelial COX-2, PDL-1, HO-1, ERs and increased supernatant levels of PGI2 and IL-10.ConclusionsIn 2 animal models of PH based on Treg deficiency, females developed more severe PH than males. The data suggest that females are especially reliant on the normal Treg function to counteract the effects of pulmonary vascular injury leading to PH
    corecore