286 research outputs found

    How Graphene Is Cut upon Oxidation?

    Full text link
    Our first principles calculations reveal that oxidative cut of graphene is realized by forming epoxy and then carbonyl pairs. Direct forming carbonyl pair to tear graphene up from an edge position is not favorable in energy. This atomic picture is valuable for developing effective graphene manipulation means. The proposed epoxy pairs may be related to some long puzzling experimental observations on graphene oxide

    Growth mechanisms for TiO

    Full text link

    Combinatorialā€“computationalā€“chemoinformatics (C3) approach to finding and analyzing low-energy tautomers

    Get PDF
    Finding the most stable tautomer or a set of low-energy tautomers of molecules is critical in many aspects of molecular modelling or virtual screening experiments. Enumeration of low-energy tautomers of neutral molecules in the gas-phase or typical solvents can be performed by applying available organic chemistry knowledge. This kind of enumeration is implemented in a number of software packages and it is relatively reliable. However, in esoteric cases such as charged molecules in uncommon, non-aqueous solvents there is simply not enough available knowledge to make reliable predictions of low energy tautomers. Over the last few years we have been developing an approach to address the latter problem and we successfully applied it to discover the most stable anionic tautomers of nucleic acid bases that might be involved in the process of DNA damage by low-energy electrons and in charge transfer through DNA. The approach involves three steps: (1) combinatorial generation of a library of tautomers, (2) energy-based screening of the library using electronic structure methods, and (3) analysis of the information generated in step (2). In steps 1ā€“3 we employ combinatorial, computational and chemoinformatics techniques, respectively. Therefore, this hybrid approach is named ā€œCombinatorial*Computational*Chemoinformaticsā€, or just abbreviated as C3 (or C-cube) approach. This article summarizes our developments and most interesting methodological aspects of the C3 approach. It can serve as an example how to identify the most stable tautomers of molecular systems for which common chemical knowledge had not been sufficient to make definite predictions

    On the Chemical Origin of the Gap Bowing in (GaAs)1āˆ’xGe2x Alloys: A Combined DFTā€“QSGW Study

    Get PDF
    Motivated by the research and analysis of new materials for photovoltaics and by the possibility of tailoring their optical properties for improved solar energy conversion, we have focused our attention on the (GaAs)1āˆ’xGe2x series of alloys. We have investigated the structural properties of some (GaAs)1āˆ’xGe2x compounds within the local-density approximation to density-functional theory, and their optical properties within the Quasiparticle Self-consistent GW approximation. The QSGW results confirm the experimental evidence of asymmetric bandgap bowing. It is explained in terms of violations of the octet rule, as well as in terms of the orderā€“disorder phase transition

    Surface and interstitial transition barriers in rutile (110) surface growth

    Get PDF
    We present calculated surface and interstitial transition barriers for Ti, O, O-2, TiO, and TiO2 atoms and clusters at the rutile (110) surface. Defect structures involving these small clusters, including adcluster and interstitial binding sites, were calculated by energy minimization using density-functional theory (DFT). Transition energies between these defect sites were calculated using the NEB method. Additionally, a modified SMB-Q charge equilibration empirical potential and a fixed-charge empirical potential were used for a comparison of the transition energy barriers. Barriers of 1.2-3.5 eV were found for all studied small cluster transitions upon the surface except for transitions involving O-2. By contrast, the O-2 diffusion barriers along the [001] direction upon the surface are only 0.13 eV. The QEq charge equilibration model gave mixed agreement with the DFT calculations, with the barriers ranging between 0.8 and 5.8 eV
    • ā€¦
    corecore