12 research outputs found

    Energy Potentials of Briquette Produced from Tannery Solid Waste

    Get PDF
    The vast quantity of waste generated from industries is one of the serious outcomes of unplanned development, resulting into quantum of hazardous organic and inorganic waste generating daily. Proper waste management is a challenging issue that must be addressed adequately. This is, therefore, carried out with a view of assessing the energy and combustion quality of tannery solid waste with a view of converting them into briquettes for cooking, heating and small home industries and reducing the menace caused by tannery waste disposal. The results of the experiments showed that the combustion rate ranged between 0.171 and 0.217 g/min, the boiling time ranged between 27.78 to 34.11 minutes, the ignition time was found between 14.2 to 17.4 minutes. The durability test and humidity resistance test showed that the briquettes have durability ranged between 92.12 and 95.04 while the humidity resistance was between 95.34 and 97.95. The carbon content ranged between 40.79 and 45.15%. Other results showed that the fixed carbon ranged between 89.93 and 95.46%, volatile matter 1.61 to 4.56% and the calorific values were found between 18.03 and 21.86 MJ/kg. The fleshing has better quality than the other three wastes studied

    Compositions Optimization of Antang Corundum for Developing Advanced Ceramic

    Get PDF
    The research aims to study and optimize the formulation of materials required for advanced ceramic production using response surface methodology (RSM). In this research effort, the five (5) process independent variables studied with their corresponding levels are: Antang corundum powder, A (92.2 – 100 %W); polyvinyl alcohol, B (0 – 5 %W); CaO, C (0 – 2.3 %W); MgO, D (0 – 0.5 %W); and the sintering temperature, E (1200 – 1500 °C). The mechanical property responses determined were density, ρ, compressive strength, C/S, flexural strength, F/S; which are key characteristics of ceramics for armour applications. The optimized density, compressive strength and flexural strength of the sintered Antang corundum are 3.45 g/cm3 g, 1982 MPa and 295 MPa respectively; while the respective RSM prediction values are 3.45 g/cm3 g, 1982 MPa and 295 MPa. On comparing the determined optimum mechanical responses of the sintered Antang ceramic with the maximum RSM prediction values, there is high level of assurance in using RSM for the formulation process in ceramic armour development

    Calorimetric and Dielectric Study of Renewable Poly(hexylene 2,5-furan-dicarboxylate)-Based Nanocomposites In Situ Filled with Small Amounts of Graphene Platelets and Silica Nanoparticles

    No full text
    International audiencePoly(hexylene 2,5 furan-dicarboxylate) (PHF) is a relatively new biobased polyester prepared from renewable resources, which is targeted for use in food packaging applications, owing to its great mechanical and gas barrier performance. Since both properties are strongly connected to crystallinity, the latter is enhanced here by the in situ introduction in PHF of graphene nanoplatelets and fumed silica nanoparticles, as well as mixtures of both, at low amounts. For this investigation, we employed Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and dielectric spectroscopy (BDS). The fillers were found to improve crystallization in both the rate (increasing Tc) and fraction (CF), which was rationalized via the concept of fillers acting as crystallization agents. This action was found stronger in the case of graphene as compared to silica. BDS allowed the detection of local and segmental dynamics, in particular in PHF for the first time. The glass transition dynamics in both BDS (α relaxation) and DSC (Tg) are mainly dominated by the relatively high CF, whereas in the PHF filled uniquely with silica strong spatial confinement effects due to crystals were revealed. Finally, all samples demonstrated the segmental-like dynamics above Tg, which screens the global chain dynamics (normal mode)
    corecore