85 research outputs found

    Orthopaedic nursing and the COVID19 pandemic: the first few months

    Get PDF
    This is an accepted manuscript of an article published by Elsevier in International Journal of Orthopaedic and Trauma Nursing on 17/06/2020, available online: https://doi.org/10.1016/j.ijotn.2020.100794 The accepted version of the publication may differ from the final published version.At the time of writing (early June 2020), the COVID19 pandemic has affected almost every aspect of life in every part of the globe. This frightening disease has devastated families, communities, and society. Despite this, the hard work and astounding adaptability of healthcare organisations and their staff has been making headlines everywhere. The planning, alterations to existing systems, new rules and guidelines and managing staff and patient expectations has created significant pressure and stress at all levels. The exisiting shortages of nurses and variations in nurses’ working conditions in some countries forms the background to this significant increase in activity. The global economic impact of the pandemic will ultimately lead to a deeper fiscal crisis in many economies that will place additional pressure on future resourcing of healthcare and, perhaps, motivate governments to rethink how healthcare is funded.Published versio

    Modulation of host cell processes by T3SS effectors

    Get PDF
    Two of the enteric Escherichia coli pathotypes-enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC)-have a conserved type 3 secretion system which is essential for virulence. The T3SS is used to translocate between 25 and 50 bacterial proteins directly into the host cytosol where they manipulate a variety of host cell processes to establish a successful infection. In this chapter, we discuss effectors from EPEC/EHEC in the context of the host proteins and processes that they target-the actin cytoskeleton, small guanosine triphosphatases and innate immune signalling pathways that regulate inflammation and cell death. Many of these translocated proteins have been extensively characterised, which has helped obtain insights into the mechanisms of pathogenesis of these bacteria and also understand the host pathways they target in more detail. With increasing knowledge of the positive and negative regulation of host signalling pathways by different effectors, a future challenge is to investigate how the specific effector repertoire of each strain cooperates over the course of an infection

    Characterization of disease resistance gene candidates of the nucleotide binding site (NBS) type from banana and correlation of a transcriptional polymorphism with resistance to Fusarium oxysporum f.sp. cubense race 4

    No full text
    Most plant disease resistance (R) genes encode proteins with a nucleotide binding site and leucine-rich repeat structure (NBS-LRR). In this study, degenerate primers were used to amplify genomic NBS-type sequences from wild banana (Musa acuminata ssp. malaccensis) plants resistant to the fungal pathogen Fusarium oxysporum formae specialis (f. sp.) cubense (FOC) race 4. Five different classes of NBS-type sequences were identified and designated as resistance gene candidates (RGCs). The deduced amino acid sequences of the RGCs revealed the presence of motifs characteristic of the majority of known plant NBS-LRR resistance genes. Structural and phylogenetic analyses grouped the banana RGCs within the non-TIR (homology to Toll/interleukin-1 receptors) subclass of NBS sequences. Southern hybridization showed that each banana RGC is present in low copy number. The expression of the RGCs was assessed by RT-PCR in leaf and root tissues of plants resistant or susceptible to FOC race 4. RGC1, 3 and 5 showed a constitutive expression profile in both resistant and susceptible plants whereas no expression was detected for RGC4. Interestingly, RGC2 expression was found to be associated only to FOC race 4 resistant lines. This finding could assist in the identification of a FOC race 4 resistance gene

    Karakteristik Geokimia Basal Alkali Formasi Manamas di Sungai Bihati, Baun, Pulau Timor

    Full text link
    Batuan beku Formasi Manamas di Sungai Bihati, Baun merupakan salah satu singkapan batuan beku di Pulau Timor yang belum banyak diteliti berdasarkan karakter geokimia. Penelitian ini bertujuan untuk mengetahui genesa dan proses yang terjadi pada batuan beku Formasi Manamas dalam kerangka tektonik yang terjadi di Pulau Timor berdasarkan analisis petrografi dan geokimia. Analisis geokimia dilakukan dengan menggunakan X-ray Fluorescence (XRF) dan Inductively Coupled Plasma-mass Spectrometery (ICP-MS) untuk mengetahui senyawa utama, unsur jejak, dan unsur tanah jarang. Batuan beku Formasi Manamas berupa intrusi basal dengan afinitas alkali yang menunjukkan pola pengayaan unsur tanah jarang yang identik dengan Ocean Island Basalt (OIB). Penelitian ini membuktikan adanya dua mekanisme pengayaan unsur yang berbeda yaitu fluid related enrichment yang berkaitan dengan aktifitas subduksi lempeng Samudra Hindia di bawah Busur Banda dan melt related enrichment yang diperkirakan berasal dari sisa lempeng Samudra Hindia yang patah yang masuk kedalam zona reservoir OIB. Kedua magma lalu bercampur dan mengalami underplating di bawah Busur Banda
    • …
    corecore