30 research outputs found

    Design of a Multi-Tube Pd-Membrane Module for Tritium Recovery from He in DEMO

    Get PDF
    Dense self-supported Pd-alloy membranes are used to selectively separate hydrogen and hydrogen isotopes. In particular, deuterium (D) and tritium (T) are currently identified as the main elements for the sustainability of the nuclear fusion reaction aimed at carbon free power generation. In the fusion nuclear reactors, a breeding blanket produces the tritium that is extracted and purified before being sent to the plasma chamber in order to sustain the fusion reaction. In this work, the application of Pd-alloy membranes has been tested for recovering tritium from a solid breeding blanket through a helium purge stream. Several simulations have been performed in order to optimize the design of a Pd-Ag multi-tube module in terms of geometry, operating parameters, and membrane module configuration (series vs. parallel). The results demonstrate that a pre-concentration stage before the Pd-membrane unit is mandatory because of the very low tritium concentration in the He which leaves the breeding blanket of the fusion reactor. The most suitable operating conditions could be reached by: (i) increasing the hydrogen partial pressure in the lumen side and (ii) decreasing the shell pressure. The preliminary design of a membrane unit has been carried out for the case of the DEMO fusion reactor: the optimized membrane module consists of an array of 182 Pd-Ag tubes of 500 mm length, 10 mm diameter, and 0.100 mm wall thickness (total active area of 2.85 m2)

    Lex generalis omnium. Un diritto del passato nel presente

    Get PDF
    Il diritto romano e la complessa tradizione del diritto comune dal primo derivata costituiscono ancora oggi la principale fonte nell’esperienza giuridica sammarinese. Nella prima parte del presente volume si illustrano e discutono le peculiari caratteristiche di tale ordinamento. Nella seconda si approfondisce il tema in altri sistemi, codificati e non, ponendo il focus, in particolare, sul ruolo che il diritto romano e comune riveste ancora nelle decisioni delle corti dove si trova impiegato ora come fonte del diritto ora come strumento ermeneutico delle norme e dei principi vigenti nell’ordinamento.Roman Law and the multifaceted tradition of ius commune, which derived from the former, still constitute the principal sources of Law in the Republic of San Marino. The first part of the volume describes and discusses the peculiar characteristics of this legal system. The second part of the volume explores the same topic in other codified and non-codified legal systems, focusing on the role played in Courts' decisions by Roman Law and ius commune: both traditions are indeed employed as sources of Law and as hermeneutic standards for interpreting norms and principles of the respective legal systems

    Preliminary Assessment of Radiolysis for the Cooling Water System in the Rotating Target of {SORGENTINA}-{RF}

    Get PDF
    The SORGENTINA-RF project aims at developing a 14 MeV fusion neutron source featuring an emission rate in the order of 5-7 x 10(13) s(-1). The plant relies on a metallic water-cooled rotating target and a deuterium (50%) and tritium (50%) ion beam. Beyond the main focus of medical radioisotope production, the source may represent a multi-purpose neutron facility by implementing a series of neutron-based techniques. Among the different engineering and technological issues to be addressed, the production of incondensable gases and corrosion product into the rotating target deserves a dedicated investigation. In this study, a preliminary analysis is carried out, considering the general layout of the target and the present choice of the target material

    Novel Non-Evaporable Getter Materials and Their Possible Use in Fusion Application for Tritium Recovery

    No full text
    Non-evaporable getters (NEGs) are metallic compounds of the IV group, particularly titanium and/or zirconium-based alloys and are usually used as pumps in vacuum technologies since they are able to sorb, by chemical reactions, most of the active gas molecules, with particular efficacy towards hydrogen isotopes. This work suggests an alternative application of these materials to fusion nuclear reactors, where there is the need to recover small amount of tritium from the large helium flow rate composing the primary coolant loop. Starting from the tritium mass balance inside the primary coolant loop, the amount of coolant to be routed inside the coolant purification system (CPS) is identified. Then a feasibility study, based on the bulk getter theory, is presented by considering three different commercial alloys, named ST707, ST101 and ZAO. The results provide the mass, the area and the regeneration parameters of the three different alloys necessary to fulfill the requirements of the CPS unit. By comparing the features of the three alloys, the ZAO material appears the most promising for the proposed application because it requires the lower amount of material and a lower number of regeneration cycles

    Optimized Water Distillation Layout for Detritiation Purpose

    No full text
    Tritium permeation constitutes a key issue for the future EU-DEMO, especially in the Breeding Blanket (BB) where fusion energy must be delivered to the Primary Heat Transport System (PHTS) and where tritium must be bred. Currently, the mitigation strategy of the tritium permeation from BB into primary coolant is based on the adoption of anti-permeation barriers and on the operation of the Coolant Purification System (CPS). This system must ensure a tritium removal rate from the primary coolant equal to the BB permeation rate at a target tritium-specific activity inside the PHTS. In the case of the Water-Cooled Lithium Lead (WCLL) BB, water distillation was selected as the most promising technology for the primary coolant detritiation due to its intrinsic simplicity and safety. Nevertheless, power consumption was recognized as a relevant concern. For this reason, the present work aims at investigating possibilities to reduce power consumption of the water CPS implementing Heat Pump-Assisted Distillation (HPAD) concepts. To do this, a review of the HPADs developed in the chemical industry was carried out, and the best options for the water CPS were identified based on qualitative considerations. Then, a quantitatively assessment of the best solution in terms of power consumption and tritium inventory was performed with the commercial numerical tool Aspen Plus. Finally, the Mechanical Vapor Recompression (MVR) concept was recognized as the most promising solution, ensuring a power saving of around 80% while keeping a limited tritium inventory

    Premessa

    No full text
    Il diritto romano e la complessa tradizione del diritto comune dal primo derivata costituiscono ancora oggi la principale fonte nell’esperienza giuridica sammarinese. Nella prima parte del presente volume si illustrano e discutono le peculiari caratteristiche di tale ordinamento. Nella seconda si approfondisce il tema in altri sistemi, codificati e non, ponendo il focus, in particolare, sul ruolo che il diritto romano e comune riveste ancora nelle decisioni delle corti dove si trova impiegato ora come fonte del diritto ora come strumento ermeneutico delle norme e dei principi vigenti nell’ordinamento.Roman Law and the multifaceted tradition of ius commune, which derived from the former, still constitute the principal sources of Law in the Republic of San Marino. The first part of the volume describes and discusses the peculiar characteristics of this legal system. The second part of the volume explores the same topic in other codified and non-codified legal systems, focusing on the role played in Courts' decisions by Roman Law and ius commune: both traditions are indeed employed as sources of Law and as hermeneutic standards for interpreting norms and principles of the respective legal systems

    Analysis of Coolant Purification Strategies for Tritium Control in DEMO Water Primary Coolant

    No full text
    A major objective of the European fusion program is the design of the DEMOnstration power plant named DEMO. Up to now, most fusion experiments have been dedicated to a plasma physics investigation while, in DEMO-oriented activities, large attention is devoted also to other systems necessary to produce tritium and to convert the fusion power to electricity. The blanket region, responsible for tritium breeding, is characterized by high tritium concentrations, high temperature, and large heat transfer metallic surfaces in which tritium can permeate. Therefore, the problem of tritium permeation and the resulting tritium content in the primary coolant are of great relevance for DEMO. For the pre-conceptual design of the Water-Cooled Lead–Lithium variant, the tritium permeation rate from blanket into coolant was assessed and possible mitigation strategies were suggested. Starting from a review of the CANDU tritium experience, a preliminary assessment of the maximum tritium concentration target in the DEMO primary coolant was performed and different strategies (off-line, on-line, and hybrid) for the water coolant purification system coupled with the DEMO operating scenario were analyzed. The intent is to identify suitable solutions to reduce the tritium concentration inside the water coolant, having in mind the complexity of a water detritiation process

    ceramic membranes for processing plasma enhancement gases

    No full text
    Abstract Fusion plasma exhaust is generally composed of unburned fuel (deuterium and tritium), helium and few impurities. However for a metal wall machine (like DEMO) that reaches elevated powers, a certain amount of plasma enhancement gas (nitrogen, Ar, Ne, etc.) could be used as seeding for enhancing the radiative power and decreasing the power load over the plasma facing components. The recovery of these Plasma Enhancement Gases (PEG) could be beneficial because of the high flow rates required, and to limit the load placed upon the exhaust detritiation system. In this work, the application of ceramic porous membranes for the separation of PEG from other plasma exhaust gases is studied. The gas permeability through porous media of hydrogen, helium and a number of inert gases of potential interest (N2, Ne, Ar, Kr, Xe) has been assessed via the models of Knudsen and Poiseuille. A parametric analysis taking into account the effect of temperature (20 and 300 °C), pressure (100 kPa and 1 MPa) and pore size of the membranes (0.1 nm, 10 nm, and 1 μm) has been undertaken to evaluate the capability of porous membrane systems to recover PEG from the exhaust gas in terms of separation factors. The preliminary design of a membrane module is also carried out

    Hydrogen and Deuterium Solubility in Commercial Pd–Ag Alloys for Hydrogen Purification

    Get PDF
    Pd–Ag alloys with compositions close to 23–25% Ag are considered as a benchmark for hydrogen permeability. They are used in small scale reactors for hydrogen separation and purification. Permeability and solubility are strictly mathematically correlated, and the temperature dependence of solubility can provide useful information about the physical state of the material, the hydrogenation enthalpy, and the occurrence of different thermodynamic states. While the permeability of Pd–Ag alloys has been largely investigated, solubility measurements are available only in a restricted temperature range. In this paper, we extend solubility measurements up to 7 bar for Pd77Ag23 in the temperature range between 25 °C and 400 °C and for Pd30Ag70 for temperatures between 190 °C and 300 °C. The occurrence of solid solutions or hydride phases is discussed, and the hydrogenation enthalpy is calculated

    Promising Isotope Effect in Pd77Ag23 for Hydrogen Separation

    No full text
    Pd–Ag alloys are largely used as hydrogen separation membranes and, as a consequence, the Pd–Ag–H system has been intensively studied. On the contrary, fewer information is available for the Pd–Ag–D system; thus, the aim of this work is to improve the knowledge of the isotope effect on the commercial Pd77Ag23 alloy, especially for temperature above 200 °C. In particular, deuterium absorption measurements are carried out in the Pd77Ag23 alloy in the temperature range between 79 and 400 °C and in the pressure range between 10−2 and 16 bar. In this exploited pressure (p) and composition (c) range, above 300 °C the pc isotherms display the typical shape of materials where only a solid solution of deuterium is present while at lower temperatures these curves seem to be better described by the coexistence of a solid solution and a deuteride in a large composition range. The obtained results are compared and discussed with the ones previously measured with the lightest hydrogen isotope. Such a comparison shows that the Pd77Ag23 alloy exhibits a clear inverse isotope effect, as the equilibrium pressure of the Pd–Ag–D system is higher than in Pd–Ag–H by a factor of ≈2 and the solubility of deuterium is about one half of that of hydrogen. In addition, the absorption measurements were used to assess the deuteration enthalpy that below 300 °C is ΔHdeut = 31.9 ± 0.3 kJ/mol, while for temperatures higher than 300 °C, ΔHdeut increases to 43 ± 1 kJ/mol. Additionally, in this case a comparison with the lighter isotope is given and both deuteration enthalpy values result lower than those reported for hydrogenation. The results described in this paper are of practical interest for applications operating above 200 °C, such as membranes or packing column, in which Pd77Ag23 has to interact with a gas stream containing both hydrogen isotopes
    corecore