16 research outputs found

    XIPE: the x-ray imaging polarimetry explorer

    Get PDF
    XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror but with a low weight. The payload is compatible with the fairing of the Vega launcher. XIPE is designed as an observatory for X-ray astronomers with 75 % of the time dedicated to a Guest Observer competitive program and it is organized as a consortium across Europe with main contributions from Italy, Germany, Spain, United Kingdom, Poland, Sweden

    Challenges for the Heatshield Development of Sample Return Missions - An Overview on European Sample Return Studies and Requirements

    Get PDF
    This presentation was part of the session : Sample Return ChallengesSixth International Planetary Probe WorkshopThe atmospheric entry of the Earth return capsule of sample return mission is one of the most critical phases of sample return missions. The Earth return from extraterrestrial bodies (e.g. Mars, comets or asteroids) involves a hyperbolic entry with entry velocities of typically above 12 km/s, resulting in peak heat fluxes in the order of 10 MW/m(2) and heat loads up to 200 MJ/m(2). While during a classical re-entry from Earth-orbit the heat flux is basically limited to convective fluxes, additionally radiative fluxes become increasingly important at entry velocities above 12 km/s. In addition, since the Earth return capsule is subject to a "double" delta-V (to the object and back to Earth), the return capsule and its heatshield have to conform to a very stringent mass budget. Further, surface recession due to ablation and abrasion effects needs to remain limited in order to guarantee the aerodynamic stability. This requires the availability of a highly efficient light-weight ablator material. In a dedicated study a screening of existing European ablators was performed to assess their suitability. Unfortunately, it turned out that none of the materials, which were developed in front of very different requirements, is suitable to sustain the very high heat fluxes while coping with the mass requirement. Dedicated development is therefore initiated to tailor materials towards the stringent requirements. Another important aspect is the availability of plasma facilities for the qualification of the materials. Such high enthalpy facility needs to be able to reproduce the extreme heat fluxes at representative dynamic pressure levels and simulating the high radiation level. Additionally it would be beneficial to assess the dynamic stability of the entry capsule using free flight ballistic tests. The paper will provide an overview on the main challenges involved in the development of the heatshield for the Earth re-entry capsule of sample return missions, resulting from different ESA studies to Mars and asteroids. This will include system aspects, the choice of the TPS material and its qualification, flight path stability and reliability. Preliminary technology roadmaps will also be presented

    The nuclear thermal electric rocket: a proposed innovative propulsion concept for manned interplanetary missions

    No full text
    Conventional propulsion technology (chemical and electric) currently limits the possibilities for human space exploration to the neighborhood of the Earth. If farther destinations (such as Mars) are to be reached with humans on board, a more capable interplanetary transfer engine featuring high thrust, high specific impulse is required. The source of energy which could in principle best meet these engine requirements is nuclear thermal. However, the nuclear thermal rocket technology is not yet ready for flight application. The development of new materials which is necessary for the nuclear core will require further testing on ground of full-scale nuclear rocket engines. Such testing is a powerful inhibitor to the nuclear rocket development, as the risks of nuclear contamination of the environment cannot be entirely avoided with current concepts. Alongside already further matured activities in the field of space nuclear power sources for generating on-board power, a low level investigation on nuclear propulsion has been running since long within ESA, and innovative concepts have already been proposed at an IAF conference in 1999 [1, 2]. Following a slow maturation process, a new concept was defined which was submitted to a concurrent design exercise in ESTEC in 2007. Great care was taken in the selection of the design parameters to ensure that this quite innovative concept would in all respects likely be feasible with margins. However, a thorough feasibility demonstration will require a more detailed design including the selection of appropriate materials and the verification that these can withstand the expected mechanical, thermal, and chemical environment. So far, the predefinition work made clear that, based on conservative technology assumptions, a specific impulse of 920 s could be obtained with a thrust of 110 kN. Despite the heavy engine dry mass, a preliminary mission analysis using conservative assumptions showed that the concept was reducing the required Initial Mass in Low Earth Orbit compared to conventional nuclear thermal rockets for a human mission to Mars. Of course, the realization of this concept still requires proper engineering and the dimensioning of quite unconventional machinery. A patent was filed on the concept. Because of the operating parameters of the nuclear core, which are very specific to this type of concept, it seems possible to test on ground this kind of engine at full scale in close loop using a reasonable size test facility with safe and clean conditions. Such tests can be conducted within fully confined enclosure, which would substantially increase the associated inherent nuclear safety levels. This breakthrough removes a showstopper for nuclear rocket engines development. The present paper will disclose the NTER (Nuclear Thermal Electric Rocket) engine concept, will present some of the results of the ESTEC concurrent engineering exercise, and will explain the concept for the NTER on-ground testing facility. Regulations and safety issues related to the development and implementation of the NTER concept will be addressed as well

    Study of habitability from Mars-NEXT

    No full text
    The question whether life exists or could have existed on other planets than Earth is not just limited to the search for life but it also requires an understanding of the habitable planetary environments. In its simplest form, habitability requires the stability of liquid water on the surface and/or subsurface of a planet. The factors that determine the stability of water and thus the habitability of a planet are multifaceted and include the internal dynamics, the presence or absence of a magnetosphere, the characteristics and evolution of a planet’s atmosphere, and the presence of energy sources. Those processes have a complex interplay and need to be studied in an interdisciplinary and comprehensive way. The future network-science Mars-NEXT mission addresses several of these objectives and will help to decipher how the key processes might have influenced the habitability on Mars and thus also on other terrestrial planets

    DEMON: a proposal for a satellite-borne experiment to study dark matter and dark energy

    No full text
    We outline a novel satellite mission concept, DEMON, aimed at advancing our comprehension of both dark matter and dark energy, taking full advantage of two complementary methods: weak lensing and the statistics of galaxy clusters. We intend to carry out a 5000 deg2 combined IR, optical and X-ray survey with galaxies up to a redshift of z~2 in order todetermine the shear correlation function. We will also find ~100000 galaxy clusters, making it the largest survey of this type to date. The DEMON spacecraft will comprise one IR/optical and eight X-ray telescopes,coupled to multiple cameras operating at different frequency bands. To a great extent, the technology employed has already been partially tested on ongoing missions, therefore ensuring improved reliability

    Status of the follow-up x-ray telescope onboard the Einstein Probe satellite

    No full text
    The Einstein Probe (EP) is an X-ray astronomical mission mainly devoting to time-domain astronomy. There are two main scientific payloads onboard EP, the Wide Field X-ray Telescope (WXT) based on the lobster eye optics and the Follow-up X-ray Telescope (FXT). FXT contains two Wolter-1 mirrors with a pnCCD detector on each focus. The total effective area is about 600 cm2 and the energy range is 0.3-10 keV. The pnCCD detector cooled by a pulse tube cooler enables high-resolution spectroscopy and imaging combined with excellent time resolution. It will also have several working modes with time resolution ranging from tens of microseconds to 50 milliseconds. Currently, the FXT is in its qualification model phase. The mirror assemblies (STM and TCM) as well as the pnCCD EM module have been manufactured and tested
    corecore