141 research outputs found

    A Scalable Low-Cost-UAV Traffic Network (uNet)

    Full text link
    This article proposes a new Unmanned Aerial Vehicle (UAV) operation paradigm to enable a large number of relatively low-cost UAVs to fly beyond-line-of-sight without costly sensing and communication systems or substantial human intervention in individual UAV control. Under current free-flight-like paradigm, wherein a UAV can travel along any route as long as it avoids restricted airspace and altitudes. However, this requires expensive on-board sensing and communication as well as substantial human effort in order to ensure avoidance of obstacles and collisions. The increased cost serves as an impediment to the emergence and development of broader UAV applications. The main contribution of this work is to propose the use of pre-established route network for UAV traffic management, which allows: (i) pre- mapping of obstacles along the route network to reduce the onboard sensing requirements and the associated costs for avoiding such obstacles; and (ii) use of well-developed routing algorithms to select UAV schedules that avoid conflicts. Available GPS-based navigation can be used to fly the UAV along the selected route and time schedule with relatively low added cost, which therefore, reduces the barrier to entry into new UAV-applications market. Finally, this article proposes a new decoupling scheme for conflict-free transitions between edges of the route network at each node of the route network to reduce potential conflicts between UAVs and ensuing delays. A simulation example is used to illustrate the proposed uNet approach.Comment: To be submitted to journal, 21 pages, 9 figure

    Iterative Machine Learning for Precision Trajectory Tracking with Series Elastic Actuators

    Full text link
    When robots operate in unknown environments small errors in postions can lead to large variations in the contact forces, especially with typical high-impedance designs. This can potentially damage the surroundings and/or the robot. Series elastic actuators (SEAs) are a popular way to reduce the output impedance of a robotic arm to improve control authority over the force exerted on the environment. However this increased control over forces with lower impedance comes at the cost of lower positioning precision and bandwidth. This article examines the use of an iteratively-learned feedforward command to improve position tracking when using SEAs. Over each iteration, the output responses of the system to the quantized inputs are used to estimate a linearized local system models. These estimated models are obtained using a complex-valued Gaussian Process Regression (cGPR) technique and then, used to generate a new feedforward input command based on the previous iteration's error. This article illustrates this iterative machine learning (IML) technique for a two degree of freedom (2-DOF) robotic arm, and demonstrates successful convergence of the IML approach to reduce the tracking error.Comment: 9 pages, 16 figure. Submitted to AMC Worksho

    Approximated Stable Inversion for Nonlinear Systems with Nonhyperbolic Internal Dynamics

    Get PDF
    A technique to achieve output tracking for nonminimum phase nonlinear systems with non- hyperbolic internal dynamics is presented. The present paper integrates stable inversion techniques (that achieve exact-tracking) with approximation techniques (that modify the internal dynamics) to circumvent the nonhyperbolicity of the internal dynamics - this nonhyperbolicity is an obstruction to applying presently available stable inversion techniques. The theory is developed for nonlinear systems and the method is applied to a two-cart with inverted-pendulum example
    • …
    corecore