141 research outputs found
A Scalable Low-Cost-UAV Traffic Network (uNet)
This article proposes a new Unmanned Aerial Vehicle (UAV) operation paradigm
to enable a large number of relatively low-cost UAVs to fly
beyond-line-of-sight without costly sensing and communication systems or
substantial human intervention in individual UAV control. Under current
free-flight-like paradigm, wherein a UAV can travel along any route as long as
it avoids restricted airspace and altitudes. However, this requires expensive
on-board sensing and communication as well as substantial human effort in order
to ensure avoidance of obstacles and collisions. The increased cost serves as
an impediment to the emergence and development of broader UAV applications. The
main contribution of this work is to propose the use of pre-established route
network for UAV traffic management, which allows: (i) pre- mapping of obstacles
along the route network to reduce the onboard sensing requirements and the
associated costs for avoiding such obstacles; and (ii) use of well-developed
routing algorithms to select UAV schedules that avoid conflicts. Available
GPS-based navigation can be used to fly the UAV along the selected route and
time schedule with relatively low added cost, which therefore, reduces the
barrier to entry into new UAV-applications market. Finally, this article
proposes a new decoupling scheme for conflict-free transitions between edges of
the route network at each node of the route network to reduce potential
conflicts between UAVs and ensuing delays. A simulation example is used to
illustrate the proposed uNet approach.Comment: To be submitted to journal, 21 pages, 9 figure
Iterative Machine Learning for Precision Trajectory Tracking with Series Elastic Actuators
When robots operate in unknown environments small errors in postions can lead
to large variations in the contact forces, especially with typical
high-impedance designs. This can potentially damage the surroundings and/or the
robot. Series elastic actuators (SEAs) are a popular way to reduce the output
impedance of a robotic arm to improve control authority over the force exerted
on the environment. However this increased control over forces with lower
impedance comes at the cost of lower positioning precision and bandwidth. This
article examines the use of an iteratively-learned feedforward command to
improve position tracking when using SEAs. Over each iteration, the output
responses of the system to the quantized inputs are used to estimate a
linearized local system models. These estimated models are obtained using a
complex-valued Gaussian Process Regression (cGPR) technique and then, used to
generate a new feedforward input command based on the previous iteration's
error. This article illustrates this iterative machine learning (IML) technique
for a two degree of freedom (2-DOF) robotic arm, and demonstrates successful
convergence of the IML approach to reduce the tracking error.Comment: 9 pages, 16 figure. Submitted to AMC Worksho
Approximated Stable Inversion for Nonlinear Systems with Nonhyperbolic Internal Dynamics
A technique to achieve output tracking for nonminimum phase nonlinear systems with non- hyperbolic internal dynamics is presented. The present paper integrates stable inversion techniques (that achieve exact-tracking) with approximation techniques (that modify the internal dynamics) to circumvent the nonhyperbolicity of the internal dynamics - this nonhyperbolicity is an obstruction to applying presently available stable inversion techniques. The theory is developed for nonlinear systems and the method is applied to a two-cart with inverted-pendulum example
- …
