59 research outputs found

    Computational studies of magnetite Fe₃O₄ and related spinel-structured materials

    Get PDF
    This thesis presents the results of ab initio based simulation studies of magnetite (Fe₃O₄) and related FeM₂X₄ (thio)spinels with M = Cr, Mn, Fe, Co and Ni and X = O and S. Using density functional theory with long-range dispersion correction and on-site Coulomb interactions (DFT + U – D2), we have investigated a number of properties of these materials. Firstly, we present a study of the inversion degree and its relevance in the electronic structure and magnetic properties of the spin filter candidates FeM₂X₄, which are one of the key devices in spintronic applications. We also analyze the role played by the size of the ions and by the crystal field stabilization effects in determining the equilibrium inversion degree. Secondly, we present the calculations of the elastic constants and other macroscopic mechanical properties by applying elastic strains on the unit cell of Fe₃O₄, which is the main component in different types of catalysts used in myriad of industrial processes. Thirdly, we calculate the geometries and surface free energies of a number of Fe₃O₄ surfaces at different compositions, including the non-dipolar stoichiometric plane, and those with a deficiency or excess of oxygen atoms. We propose a morphology in thermodynamic equilibrium conditions for the nanocrystals of this compound. We also present the simulated scanning tunnelling microscopy images of the different terminations of the surfaces shown on the Fe₃O₄ morphology. Finally, we investigate the initial oxidation stages of the greigite (Fe₃S₄) (001) surface induced by water. Fe₃S₄ is a mineral widely identified in anoxic aquatic environments and certain soils, which can be oxidised by these environments producing and extremely acid solution of sulfur-rich wastewater called acid mine drainage (AMD). We propose a number of mechanisms involving one or two water molecules and one OH group to explain the replacement of one sulfur by one oxygen atom in this mineral. The findings presented in this thesis provides a theoretical insight into various bulk and surface properties of this group of compounds

    Early Oxidation Processes on the Greigite Fe₃S⁴(001) Surface by Water: A Density Functional Theory Study

    Get PDF
    Greigite (Fe3S4), the sulfide counterpart of the spinel-structured oxide material magnetite (Fe3O4), is a mineral widely identified in anoxic aquatic environments and certain soils, which can be oxidized, thereby producing extremely acid solutions of sulfur-rich wastewaters, so-called acid mine drainage (AMD) or acid rock drainage (ARD). Here we report a computational study of the partial replacement of sulfur (forming H2S) by oxygen (from H2O) in the Fe3S4(001) surface, derived from density functional theory calculations with on-site Coulomb approach and long-range dispersion corrections (DFT+U–D2). We have proposed three pathways for the oxidation of the surface as a function of H2O coverage and pH. Different pathways give different intermediates, some of which are followed by a solid-state diffusion of the O atom. Low levels of H2O coverage, and especially basic conditions, seem to be essential, leading to the most favorable energetic landscape for the oxidation of the Fe3S4(001) surface. We have derived the thermodynamic and kinetic profile for each mechanism and plotted the concentration of H2S and protons in aqueous solution and thermodynamic equilibrium with the stoichiometric and partially oxidized Fe3S4(001) surface as a function of the temperature. Changes in the calculated vibrational frequencies of the adsorbed intermediates are used as a means to characterize their transformation. We have taken into account statistical entropies for H2S and H2O and other experimental parameters, showing that this mineral may well be among those responsible for the generation of AMD

    A DFT+U study of the oxidation of cobalt nanoparticles: Implications for biomedical applications

    Get PDF
    Nanomaterials – magnetic nanoparticles in particular have been shown to have significant potential in cancer theranostics, where iron oxides are commonly the materials of choice. While biocompatibility presents an advantage, the low magnetisation is a barrier to their widespread use. As a result, highly magnetic cobalt nanoparticles are attracting increasing attention as a promising alternative. Precise control of the physiochemical properties of such magnetic systems used in biomedicine is crucial, however, it is difficult to test their behaviour in vivo. In the present work, density functional theory calculations with the Dudarev approach (DFT+U) have been used to model the adsorption of oxygen on low Miller index surfaces of the hexagonal phase of cobalt. In vivo conditions of temperature and oxygen partial pressure in the blood have been considered, and the effects of oxidation on the overall properties of cobalt nanoparticles are described. It is shown that oxygen adsorbs spontaneously on all surfaces with the formation of non-magnetic cobalt tetroxide, Co3O4, at body temperature, confirming that, despite their promising magnetic properties, bare cobalt nanoparticles would not be suitable for biomedical applications. Surface modifications could be designed to preserve their favourable characteristics for future utilisation

    Exploring the Redox Properties of the Low-Miller Index Surfaces of Copper Tungstate (CuWO<sub>4</sub>): Evaluating the Impact of the Environmental Conditions on the Water Splitting and Carbon Dioxide Reduction Processes

    Get PDF
    Photocatalysis has gained significant attention and interest as an environmentally friendly and sustainable approach to the production of hydrogen through water splitting and the reduction and conversion of CO2. Copper tungstate (CuWO4) is a highly promising candidate for these applications owing to its appropriate bandgap and superior stability under different conditions. However, the redox behavior of the CuWO4 surfaces under different environments and their impact on the morphology of the material nanoparticles, as well as the electronic properties, remain poorly understood. In this study, we have employed density functional theory calculations to investigate the properties of the bulk and pristine surfaces of CuWO4 and how the latter are impacted by oxygen chemisorption under the conditions required for photocatalytic water splitting and carbon dioxide reduction processes. We have calculated the lattice parameters and electronic properties of the bulk phase, as well as the surface energies of all possible nonpolar, stoichiometric, and symmetric terminations of the seven low-Miller index surfaces and found that the (010) and (110) facets are the thermodynamically most stable. The surface-phase diagrams were used to derive the equilibrium crystal morphologies, which show that the pristine (010) surface is prominent under synthesis and room conditions. Our crystal morphologies suggest that the partially oxidized (110) surface and the partially reduced (011) surface may play an important role in the photocatalytic splitting of water and CO2 conversion, respectively. Our results provide a comprehensive understanding of the CuWO4 surfaces under the conditions of important photocatalytic applications

    Interaction of H2O with the Platinum Pt (001), (011), and (111) Surfaces: A Density Functional Theory Study with Long-Range Dispersion Corrections

    Get PDF
    Platinum is a noble metal that is widely used for the electrocatalytic production of hydrogen, but the surface reactivity of platinum toward water is not yet fully understood, even though the effect of water adsorption on the surface free energy of Pt is important in the interpretation of the morphology and catalytic properties of this metal. In this study, we have carried out density functional theory calculations with long-range dispersion corrections [DFT-D3-(BJ)] to investigate the interaction of H2O with the Pt (001), (011), and (111) surfaces. During the adsorption of a single H2O molecule on various Pt surfaces, it was found that the lowest adsorption energy (Eads) was obtained for the dissociative adsorption of H2O on the (001) surface, followed by the (011) and (111) surfaces. When the surface coverage was increased up to a monolayer, we noted an increase in Eads/H2O with increasing coverage for the (001) surface, while for the (011) and (111) surfaces, Eads/H2O decreased. Considering experimental conditions, we observed that the highest coverage was obtained on the (011) surface, followed by the (111) and (001) surfaces. However, with an increase in temperature, the surface coverage decreased on all the surfaces. Total desorption occurred at temperatures higher than 400 K for the (011) and (111) surfaces, but above 850 K for the (001) surface. From the morphology analysis of the Pt nanoparticle, we noted that, when the temperature increased, only the electrocatalytically active (111) surface remained

    A comparative DFT study of the mechanical and electronic properties of greigite Fe3S4 and magnetite Fe3O4

    Get PDF
    Greigite (Fe3S4) and its analogue oxide, magnetite (Fe3O4), are natural minerals with an inverse spinel structure whose atomic-level properties may be difficult to investigate experimentally. Here, [D. Rickard and G. W. Luther, Chem. Rev.107, 514 (Year: 2007)10.1021/cr0503658] we have calculated the elastic constants and other macroscopic mechanical properties by applying elastic strains on the unit cells. We also have carried out a systematic study of the electronic properties of Fe3S4 and Fe3O4, where we have used an ab initio method based on spin-polarized density functional theory with the on-site Coulomb repulsion approximation (Ueff is 1.0 and 3.8 eV for Fe3S4 and Fe3O4, respectively). Comparison of the properties of Fe3S4 and Fe3O4 shows that the sulfide is more covalent than the oxide, which explains the low magnetization of saturation of greigite cited in several experimental reports

    Interaction of SO2 with the Platinum (001), (011), and (111) Surfaces: A DFT Study

    Get PDF
    Given the importance of SO2 as a pollutant species in the environment and its role in the hybrid sulphur (HyS) cycle for hydrogen production, we carried out a density functional theory study of its interaction with the Pt (001), (011), and (111) surfaces. First, we investigated the adsorption of a single SO2 molecule on the three Pt surfaces. On both the (001) and (111) surfaces, the SO2 had a S,O-bonded geometry, while on the (011) surface, it had a co-pyramidal and bridge geometry. The largest adsorption energy was obtained on the (001) surface (Eads = −2.47 eV), followed by the (011) surface (Eads = −2.39 and −2.28 eV for co-pyramidal and bridge geometries, respectively) and the (111) surface (Eads = −1.85 eV). When the surface coverage was increased up to a monolayer, we noted an increase of Eads/SO2 for all the surfaces, but the (001) surface remained the most favourable overall for SO2 adsorption. On the (111) surface, we found that when the surface coverage was θ > 0.78, two neighbouring SO2 molecules reacted to form SO and SO3. Considering the experimental conditions, we observed that the highest coverage in terms of the number of SO2 molecules per metal surface area was (111) > (001) > (011). As expected, when the temperature increased, the surface coverage decreased on all the surfaces, and gradual desorption of SO2 would occur above 500 K. Total desorption occurred at temperatures higher than 700 K for the (011) and (111) surfaces. It was seen that at 0 and 800 K, only the (001) and (111) surfaces were expressed in the morphology, but at 298 and 400 K, the (011) surface was present as well. Taking into account these data and those from a previous paper on water adsorption on Pt, it was evident that at temperatures between 400 and 450 K, where the HyS cycle operates, most of the water would desorb from the surface, thereby increasing the SO2 concentration, which in turn may lead to sulphur poisoning of the catalyst

    CO2 interaction with violarite (FeNi2S4) surfaces: a dispersion-corrected DFT study

    Get PDF
    The unbridled emissions of gases derived from the use of fossil fuels have led to an excessive concentration of carbon dioxide (CO2) in the atmosphere with concomitant problems to the environment. It is therefore imperative that new cost-effective catalysts are developed to mitigate the resulting harmful effects through the activation and conversion of CO2 molecules. In this paper, we have used calculations based on the density functional theory (DFT), including two semi-empirical approaches for the long-range dispersion interactions (-D2 and -D3), to explore the interaction of CO2 with the surfaces of spinel-structured violarite (FeNi2S4). This ternary sulfide contains iron ions in the highest possible oxidation state, while the nickel atoms are in the mixed 2+/3+ valence state. We found that CO2 interaction with violarite is only moderate due to the repulsion between the oxygen lone pairs and the electronic clouds of the sulfur surface atoms. This suggests that the CO2 activation is not dictated by the presence of nickel, as compared to the pure iron-isomorph greigite (Fe3S4). These results differ from findings in (Ni,Fe) ferredoxin enzymes, where the Ni/Fe ratio influences the redox potential, which suggests that the periodic crystal structure of violarite may hinder its redox capability

    The role of surface oxidation and Fe-Ni synergy in Fe-Ni-S catalysts for CO2 hydrogenation.

    Get PDF
    Increasing carbon dioxide (CO2) emissions, resulting in climate change, have driven the motivation to achieve the effective and sustainable conversion of CO2 into useful chemicals and fuels. Taking inspiration from biological processes, synthetic iron-nickel-sulfides have been proposed as suitable catalysts for the hydrogenation of CO2. In order to experimentally validate this hypothesis, here we report violarite (Fe,Ni)3S4 as a cheap and economically viable catalyst for the hydrogenation of CO2 into formate under mild, alkaline conditions at 125 °C and 20 bar (CO2 : H2 = 1 : 1). Calcination of violarite at 200 °C resulted in excellent catalytic activity, far superior to that of Fe-only and Ni-only sulfides. We further report first principles simulations of the CO2 conversion on the partially oxidised (001) and (111) surfaces of stoichiometric violarite (FeNi2S4) and polydymite (Ni3S4) to rationalise the experimentally observed trends. We have obtained the thermodynamic and kinetic profiles for the reaction of carbon dioxide (CO2) and water (H2O) on the catalyst surfaces via substitution and dissociation mechanisms. We report that the partially oxidised (111) surface of FeNi2S4 is the best catalyst in the series and that the dissociation mechanism is the most favourable. Our study reveals that the partial oxidation of the FeNi2S4 surface, as well as the synergy of the Fe and Ni ions, are important in the catalytic activity of the material for the effective hydrogenation of CO2 to formate
    corecore