41,918 research outputs found
Demixing can occur in binary hard-sphere mixtures with negative non-additivity
A binary fluid mixture of non-additive hard spheres characterized by a size
ratio and a non-additivity parameter
is considered in infinitely many
dimensions. From the equation of state in the second virial approximation
(which is exact in the limit ) a demixing transition with a
critical consolute point at a packing fraction scaling as
is found, even for slightly negative non-additivity, if
. Arguments concerning the stability of the
demixing with respect to freezing are provided.Comment: 4 pages, 2 figures; title changed; final paragraph added; to be
published in PRE as a Rapid Communicatio
Diffusion-limited deposition with dipolar interactions: fractal dimension and multifractal structure
Computer simulations are used to generate two-dimensional diffusion-limited
deposits of dipoles. The structure of these deposits is analyzed by measuring
some global quantities: the density of the deposit and the lateral correlation
function at a given height, the mean height of the upper surface for a given
number of deposited particles and the interfacial width at a given height.
Evidences are given that the fractal dimension of the deposits remains constant
as the deposition proceeds, independently of the dipolar strength. These same
deposits are used to obtain the growth probability measure through Monte Carlo
techniques. It is found that the distribution of growth probabilities obeys
multifractal scaling, i.e. it can be analyzed in terms of its
multifractal spectrum. For low dipolar strengths, the spectrum is
similar to that of diffusion-limited aggregation. Our results suggest that for
increasing dipolar strength both the minimal local growth exponent
and the information dimension decrease, while the fractal
dimension remains the same.Comment: 10 pages, 7 figure
Diffusion-limited deposition of dipolar particles
Deposits of dipolar particles are investigated by means of extensive Monte
Carlo simulations. We found that the effect of the interactions is described by
an initial, non-universal, scaling regime characterized by orientationally
ordered deposits. In the dipolar regime, the order and geometry of the clusters
depend on the strength of the interactions and the magnetic properties are
tunable by controlling the growth conditions. At later stages, the growth is
dominated by thermal effects and the diffusion-limited universal regime
obtains, at finite temperatures. At low temperatures the crossover size
increases exponentially as T decreases and at T=0 only the dipolar regime is
observed.Comment: 5 pages, 4 figure
A Flexible Implementation of a Matrix Laurent Series-Based 16-Point Fast Fourier and Hartley Transforms
This paper describes a flexible architecture for implementing a new fast
computation of the discrete Fourier and Hartley transforms, which is based on a
matrix Laurent series. The device calculates the transforms based on a single
bit selection operator. The hardware structure and synthesis are presented,
which handled a 16-point fast transform in 65 nsec, with a Xilinx SPARTAN 3E
device.Comment: 4 pages, 4 figures. IEEE VI Southern Programmable Logic Conference
201
osp(1|2) Conformal Field Theory
We review some results recently obtained for the conformal field theories
based on the affine Lie superalgebra osp(1|2). In particular, we study the
representation theory of the osp(1|2) current algebras and their character
formulas. By means of a free field representation of the conformal blocks, we
obtain the structure constants and the fusion rules of the model. (Lecture
delivered at the CERN-Santiago de Compostela-La Plata Meeting, "Trends in
Theoretical Physics", La Plata, Argentina, April-May 1997).Comment: 16 pages, 1 figure, LaTe
Comment on "Theory and computer simulation for the equation of state of additive hard-disk fluid mixtures"
A flaw in the comparison between two different theoretical equations of state
for a binary mixture of additive hard disks and Monte Carlo results, as
recently reported in C. Barrio and J. R. Solana, Phys. Rev. E 63, 011201
(2001), is pointed out. It is found that both proposals, which require the
equation of state of the single component system as input, lead to comparable
accuracy but the one advocated by us [A. Santos, S. B. Yuste, and M. L\'{o}pez
de Haro, Mol. Phys. 96, 1 (1999)] is simpler and complies with the exact limit
in which the small disks are point particles.Comment: 4 pages, including 1 figur
Coherent State Path Integrals in the Weyl Representation
We construct a representation of the coherent state path integral using the
Weyl symbol of the Hamiltonian operator. This representation is very different
from the usual path integral forms suggested by Klauder and Skagerstan in
\cite{Klau85}, which involve the normal or the antinormal ordering of the
Hamiltonian. These different representations, although equivalent quantum
mechanically, lead to different semiclassical limits. We show that the
semiclassical limit of the coherent state propagator in Weyl representation is
involves classical trajectories that are independent on the coherent states
width. This propagator is also free from the phase corrections found in
\cite{Bar01} for the two Klauder forms and provides an explicit connection
between the Wigner and the Husimi representations of the evolution operator.Comment: 23 page
- …