45,715 research outputs found

    The Self-Force of a Charged Particle in Classical Electrodynamics with a Cut-off

    Get PDF
    We discuss, in the context of classical electrodynamics with a Lorentz invariant cut-off at short distances, the self-force acting on a point charged particle. It follows that the electromagnetic mass of the point charge occurs in the equation of motion in a form consistent with special relativity. We find that the exact equation of motion does not exhibit runaway solutions or non-causal behavior, when the cut-off is larger than half of the classical radius of the electron.Comment: 17 pages, 1 figur

    Detection of Anomalous Microwave Emission in the Pleiades Reflection Nebula with WMAP and the COSMOSOMAS Experiment

    Get PDF
    We present evidence for anomalous microwave emission (AME) in the Pleiades reflection nebula, using data from the seven-year release of the Wilkinson Microwave Anisotropy Probe (WMAP) and from the COSMOSOMAS experiment. The flux integrated in a 1-degree radius around R.A.=56.24^{\circ}, Dec.=23.78^{\circ} (J2000) is 2.15 +/- 0.12 Jy at 22.8 GHz, where AME is dominant. COSMOSOMAS data show no significant emission, but allow to set upper limits of 0.94 and 1.58 Jy (99.7% C.L.) respectively at 10.9 and 14.7 GHz, which are crucial to pin down the AME spectrum at these frequencies, and to discard any other emission mechanisms which could have an important contribution to the signal detected at 22.8 GHz. We estimate the expected level of free-free emission from an extinction-corrected H-alpha template, while the thermal dust emission is characterized from infrared DIRBE data and extrapolated to microwave frequencies. When we deduct the contribution from these two components at 22.8 GHz the residual flux, associated with AME, is 2.12 +/- 0.12 Jy (17.7-sigma). The spectral energy distribution from 10 to 60 GHz can be accurately fitted with a model of electric dipole emission from small spinning dust grains distributed in two separated phases of molecular and atomic gas, respectively. The dust emissivity, calculated by correlating the 22.8 GHz data with 100-micron data, is found to be 4.36+/-0.17 muK/MJy/sr, a value that is rather low compared with typical values in dust clouds. The physical properties of the Pleiades nebula indicate that this is indeed a much less opaque object than others were AME has usually been detected. This fact, together with the broad knowledge of the stellar content of this region, provides an excellent testbed for AME characterization in physical conditions different from those generally explored up to now.Comment: Accepted for publication in ApJ. 12 pages, 8 figure

    Magnetism and Pairing in Hubbard Bilayers.

    Full text link
    We study the Hubbard model on a bilayer with repulsive on-site interactions, UU, in which fermions undergo both intra-plane (tt) and inter-plane (tzt_z) hopping. This situation is what one would expect in high-temperature superconductors such as YBCO, with two adjacent CuO2_2 planes. Magnetic and pairing properties of the system are investigated through Quantum Monte Carlo simulations for both half- and quarter-filled bands. We find that in all cases inter-planar pairing with dx2z2d_{x^2-z^2} symmetry is dominant over planar pairing with dx2y2d_{x^2-y^2} symmetry, and that for tzt_z large enough pair formation is possible through antiferromagnetic correlations. However, another mechanism is needed to make these pairs condense into a superconducting state at lower temperatures. We identify the temperature for pair formation with the spin gap crossover temperature. [Submitted to Phys. Rev. B]Comment: 7 pages, uuencoded self-unpacking PS file with text and figures

    Building analytical three-field cosmological models

    Full text link
    A difficult task to deal with is the analytical treatment of models composed by three real scalar fields, once their equations of motion are in general coupled and hard to be integrated. In order to overcome this problem we introduce a methodology to construct three-field models based on the so-called "extension method". The fundamental idea of the procedure is to combine three one-field systems in a non-trivial way, to construct an effective three scalar field model. An interesting scenario where the method can be implemented is within inflationary models, where the Einstein-Hilbert Lagrangian is coupled with the scalar field Lagrangian. We exemplify how a new model constructed from our method can lead to non-trivial behaviors for cosmological parameters.Comment: 11 pages, and 3 figures, updated version published in EPJ

    On the Uq[sl(2)]{\cal{U}}_{q}[sl(2)] Temperley-Lieb reflection matrices

    Full text link
    This work concerns the boundary integrability of the spin-s Uq[sl(2)]{\cal{U}}_{q}[sl(2)] Temperley-Lieb model. A systematic computation method is used to constructed the solutions of the boundary Yang-Baxter equations. For ss half-integer, a general 2s(s+1)+3/22s(s+1)+3/2 free parameter solution is presented. It turns that for ss integer, the general solution has 2s(s+1)+12s(s+1)+1 free parameters. Moreover, some particular solutions are discussed.Comment: LaTex 17 page

    A Flexible Implementation of a Matrix Laurent Series-Based 16-Point Fast Fourier and Hartley Transforms

    Full text link
    This paper describes a flexible architecture for implementing a new fast computation of the discrete Fourier and Hartley transforms, which is based on a matrix Laurent series. The device calculates the transforms based on a single bit selection operator. The hardware structure and synthesis are presented, which handled a 16-point fast transform in 65 nsec, with a Xilinx SPARTAN 3E device.Comment: 4 pages, 4 figures. IEEE VI Southern Programmable Logic Conference 201

    Two-sided asymmetric subduction; implications for tectonomagmatic and metallogenic evolution of the Lut Block, Eastern Iran

    Get PDF
    West directed subduction zones show common characteristics, such as low structural elevation, deep trench, steep slab and a conjugate back-arc basin that are opposite to those of the east directed subduction zones. The tectonomagmatic and metallogenic setting of the Lut Block is still a matter of debate and several hypotheses have been put forward. Despite some authors denying the influence of the operation of Benioff planes, the majority propose that it occurred beneath the Afghan Block, while others consider that oceanic lithosphere was dragged under the Lut Block. Cu-Au porphyry deposits seem to occur in an island arc geotectonic setting during the middle Eocene while Mo-bearing deposits are coincident with the crustal thickening during Oligocene. We introduce new trace element and isotope geochemical data for granitoids and structural evidences testifying the two-sided asymmetric subduction beneath both Afghan and Lut Blocks, with different rates of consumption of oceanic lithosphere

    Cosmological scenarios from multiquintessence

    Full text link
    In this work we derive and analyse cosmological scenarios coming from multi-component scalar field models. We consider a direct sum of a sine-Gordon with a Z2 model, and also a combination of those with a BNRT model. Moreover, we work with a modified version of the BNRT model, which breaks the Z2 x Z2 symmetry of the original BNRT potential, coupled with the sine-Gordon and with the standard Z2 models. We show that our approach can be straightforwardly elevated to NN fields. All the computations are made analytically and some parameters restriction is put forward in order to get in touch with complete and realistic cosmological scenarios

    Work and Quantum Phase Transitions: Is there Quantum Latency?

    Full text link
    We study the physics of quantum phase transitions from the perspective of non-equilibrium thermodynamics. For first order quantum phase transitions, we find that the average work done per quench in crossing the critical point is discontinuous. This leads us to introduce the quantum latent work in analogy with the classical latent heat of first order classical phase transitions. For second order quantum phase transitions the irreversible work is closely related to the fidelity susceptibility for weak sudden quenches of the system Hamiltonian. We demonstrate our ideas with numerical simulations of first, second, and infinite order phase transitions in various spin chain models.Comment: accepted in PR
    corecore