20,540 research outputs found
Exclusive photoproduction of quarkonium in proton-nucleus collisions at energies available at the CERN Large Hadron Collider
In this work we investigate the coherent photoproduction of psi(1S), psi(2S)
and Upsilon (1S) states in the proton-nucleus collisions in the LHC energies.
Predictions for the rapidity distributions are presented using the color dipole
formalism and including saturation effects that are expected to be relevant at
high energies. Calculations are done at the energy 5.02 TeV and also for the
next LHC run at 8.8 TeV in proton-lead mode. Discussion is performed on the
main theoretical uncertainties associated to the calculations.Comment: 05 pages, 5 figures. Version to be published in Phys. Rev.
Light vector meson photoproduction in hadron-hadron and nucleus-nucleus collisions at the energies available at the CERN Large Hadron Collider
In this work we analyse the theoretical uncertainties on the predictions for
the photoproduction of light vector mesons in coherent pp, pA and AA collisions
at the LHC energies using the color dipole approach. In particular, we present
our predictions for the rapidity distribution for rh0 and phi photoproduction
and perform an analysis on the uncertainties associated to the choice of vector
meson wavefunctionand the phenomenological models for the dipole cross section.
Comparison is done with the recent ALICE analysis on coherent production of rho
at 2.76 TeV in PbPb collisions.Comment: 07 pages, 6 figures. Version to be published in Phys. Rev.
Diffractive dissociation in proton-nucleus collisions at collider energies
The cross section for the nuclear diffractive dissociation in proton-lead
collisions at the LHC is estimated. Based on the current theoretical
uncertainties for the single (target) diffactive cross section in hadron-hadron
reactions one obtains sigma_SD(5.02 TeV) = 19.67 \pm 5.41 mb and sigma_SD(8.8
TeV) = 18.76 \pm 5.77 mb, respectively. The invariant mass M_X for the reaction
pPb -> pX is also analyzed. Discussion is performed on the main theoretical
uncertainties associated to the calculations.Comment: 04 pages, 2 figures. Final version to be published in European
Physical Journal A - "Hadrons and Nuclei
Emergence of Hierarchy on a Network of Complementary Agents
Complementarity is one of the main features underlying the interactions in
biological and biochemical systems. Inspired by those systems we propose a
model for the dynamical evolution of a system composed by agents that interact
due to their complementary attributes rather than their similarities. Each
agent is represented by a bit-string and has an activity associated to it; the
coupling among complementary peers depends on their activity. The connectivity
of the system changes in time respecting the constraint of complementarity. We
observe the formation of a network of active agents whose stability depends on
the rate at which activity diffuses in the system. The model exhibits a
non-equilibrium phase transition between the ordered phase, where a stable
network is generated, and a disordered phase characterized by the absence of
correlation among the agents. The ordered phase exhibits multi-modal
distributions of connectivity and activity, indicating a hierarchy of
interaction among different populations characterized by different degrees of
activity. This model may be used to study the hierarchy observed in social
organizations as well as in business and other networks.Comment: 13 pages, 4 figures, submitte
Tecnologia para biodegradação da casca de coco sem gerar outros resíduos.
bitstream/CPATC/19770/1/f_07_2007.pdfExiste o documento impresso
- …