969 research outputs found

    Size and shape of Mott regions for fermionic atoms in a two-dimensional optical lattice

    Full text link
    We investigate the harmonic-trap control of size and shape of Mott regions in the Fermi Hubbard model on a square optical lattice. The use of Lanczos diagonalization on clusters with twisted boundary conditions, followed by an average over 50-80 samples, drastically reduce finite-size effects in some ground state properties; calculations in the grand canonical ensemble together with a local-density approximation (LDA) allow us to simulate the radial density distribution. We have found that as the trap closes, the atomic cloud goes from a metallic state, to a Mott core, and to a Mott ring; the coverage of Mott atoms reaches a maximum at the core-ring transition. A `phase diagram' in terms of an effective density and the on-site repulsion is proposed, as a guide to maximize the Mott coverage. We also predict that the usual experimentally accessible quantities, the global compressibility and the average double occupancy (rather, its density derivative) display detectable signatures of the core-ring transition. Some spin correlation functions are also calculated, and predict the existence N\'eel ordering within Mott cores and rings.Comment: 5 pages, 6 figure

    Multiperiodic magnetic structures in Hubbard superlattices

    Full text link
    We consider fermions in one-dimensional superlattices (SL's), modeled by site-dependent Hubbard-U couplings arranged in a repeated pattern of repulsive (i.e., U>0) and free (U=0) sites. Density Matrix Renormalization Group (DMRG) diagonalization of finite systems is used to calculate the local moment and the magnetic structure factor in the ground state. We have found four regimes for magnetic behavior: uniform local moments forming a spin-density wave (SDW), `floppy' local moments with short-ranged correlations, local moments on repulsive sites forming long-period SDW's superimposed with short-ranged correlations, and local moments on repulsive sites solely with long-period SDW's; the boundaries between these regimes depend on the range of electronic densities, rho, and on the SL aspect ratio. Above a critical electronic density, rho_{uparrow downarrow}, the SDW period oscillates both with rho and with the spacer thickness. The former oscillation allows one to reproduce all SDW wave vectors within a small range of electronic densities, unlike the homogeneous system. The latter oscillation is related to the exchange oscillation observed in magnetic multilayers. A crossover between regimes of `thin' to `thick' layers has also been observed.Comment: 9 two-column pages, 10 figure

    Luttinger liquid superlattices: realization of gapless insulating phases

    Get PDF
    We investigate Luttinger Liquid superlattices, a periodic structure composed of two kinds of one-dimensional systems of interacting electrons. We calculate several properties of the low-energy sector: the effective charge and spin velocities, the compressibility, various correlation functions, the Landauer conductance and the Drude weight. The low-energy properties are subsumed into effective parameters, much like homogeneous one-dimensional systems. A generic result is the weighted average nature of these parameters, in proportion to the spatial extent of the underlying subunits, pointing to the possibility of ``engineered'' structures. As a specific realization, we consider a one-dimensional Hubbard superlattice, which consists of a periodic arrangement of two long Hubbard chains with different coupling constants and different hopping amplitudes. This system exhibits a rich phase diagram with several phases, both metallic and insulating. We have found that gapless insulating phases are present over a wide range of parameters.Comment: 16 pages, 15 figures, RevTeX
    • …
    corecore