59 research outputs found

    Older Compared With Younger Adults Performed 467 Fewer Sit-to-Stand Trials, Accompanied by Small Changes in Muscle Activation and Voluntary Force

    Get PDF
    Background: Repetitive sit-to-stand (rSTS) is a fatigue perturbation model to examine the age-effects on adaptability in posture and gait, yet the age-effects on muscle activation during rSTS per se are unclear. We examined the effects of age and exhaustive rSTS on muscle activation magnitude, onset, and duration during ascent and descent phases of the STS task.Methods: Healthy older (n = 12) and younger (n = 11) adults performed rSTS, at a controlled frequency dictated by a metronome (2 s for cycle), to failure or for 30 min. We assessed muscle activation magnitude, onset, and duration of plantar flexors, dorsiflexors, knee flexors, knee extensors, and hip stabilizers during the initial and late stages of rSTS. Before and after rSTS, we measured maximal voluntary isometric knee extension force, and rate of perceived exertion, which was also recorded during rSTS task.Results: Older vs. younger adults generated 35% lower maximum voluntary isometric knee extension force. During the initial stage of rSTS, older vs. younger adults activated the dorsiflexor 60% higher, all 5 muscle groups 37% longer, and the hip stabilizers 80% earlier. Older vs. younger adults completed 467 fewer STS trials and, at failure, their rate of perceived exertion was ~17 of 20 on the Borg scale. At the end of the rSTS, maximum voluntary isometric knee extension force decreased 16% similarly in older and younger, as well as the similar age groups decline in activation of the dorsiflexor and knee extensor muscles (all p < 0.05).Conclusion: By performing 467 fewer STS trials, older adults minimized the potential effects of fatigability on muscle activation, voluntary force, and motor function. Such a sparing effect may explain the minimal changes in gait after rSTS reported in previous studies, suggesting a limited scope of this perturbation model to probe age-effects on muscle adaptation in functional tasks

    Effect of different types of exercises on psychological and cognitive features in people with Parkinson's disease:a randomized controlled trial

    Get PDF
    BACKGROUND: Parkinson's disease (PD) is a neurodegenerative and progressive disease marked by the presence of motor and non-motor symptoms, as psychological and cognitive impairment. Physical exercises have been prescribed as complementary therapy for PD, and the type of intervention and duration of the intervention should be taken into account. OBJECTIVE: We aimed to compare the effect of different exercise modalities (functional mobility, multimodal and cognitive) and length (4 and 8 months) on psychological and cognition in people with PD. This study followed the CONSORT extension for non-pharmacological trials. METHODS: In this randomized controlled trial, we assessed 107 participants between 2011 and 2013. At the end of 3 years, participants with PD (mild to moderate stages) who achieved the criteria were assessed considering 3 different groups of exercise: Multimodal (n=38), Functional Mobility (n=33) and Mental/Leisure (n=36). All 3 interventions were performed for 32 weeks, twice a week, with 60 min for each session (64 sessions in total). Psychological and cognitive function were assessed at baseline and after 4 and 8 months. RESULTS: The Functional Mobility and Mental/Leisure training had a potential effect on maintaining cognitive function (executive function, attention and work memory). The Multimodal training did not show a benefit for cognitive features and was not even able to delay the progressive decline in cognitive functions; however, this modality had a positive effect on physical stress after 8 months of exercise. CONCLUSIONS: An intervention that requires high complexity and specific activities, such as locomotor and cognitive exercise, provides a maintenance effect against the degeneration in cognition associated with the progression of PD and thus can delay the progressive decline in cognitive function in PD

    Effects of experimentally induced fatigue on healthy older adults' gait:A systematic review

    Get PDF
    INTRODUCTION: While fatigue is ubiquitous in old age and visibly interferes with mobility, studies have not yet examined the effects of self-reported fatigue on healthy older adults' gait. As a model that simulates this daily phenomenon, we systematically reviewed eleven studies that compared the effects of experimentally induced muscle and mental performance fatigability on gait kinematics, variability, kinetics, and muscle activity in healthy older adults. METHODS: We searched for studies in databases (PubMed and Web of Science) using Fatigue, Gait, and Clinical conditions as the main terms and extracted the data only from studies that experimentally induced fatigue by sustained muscle or mental activities in healthy older adults. RESULTS: Eleven studies were included. After muscle performance fatigability, six of nine studies observed increases in stride length, width, gait velocity (Effect Size [ES] range: 0.30 to 1.22), inter-stride trunk acceleration variability (ES: 2.06), and ankle muscle coactivation during gait (ES: 0.59, n = 1 study). After sustained mental activity, the coefficient of variation of stride outcomes increased (ES: 0.59 to 0.67, n = 1 study) during dual-task but not single-task walking. CONCLUSION: Muscle performance fatigability affects spatial and temporal features of gait and, mainly, inter-stride trunk acceleration variability. In contrast, sustained mental activity tends only to affect step variability during dual tasking. A critical and immediate step for future studies is to determine the effects of self-reported fatigue on gait biomechanics and variability in healthy older adults to verify the viability of experimentally induced fatigue as a model for the study of gait adaptability in old age

    Being physically active minimizes the effects of leg muscle fatigue on obstacle negotiation in people with Parkinson's disease

    Get PDF
    It is challenging for people with Parkinson's disease (PwPD) to adjust their gait to perturbations, including fatigue. Obstacle negotiation increases the risk of tripping and falling in PD. Being physically active can improve gait control and the ability to negotiate obstacles while walking under fatigue state. We thus determined the effects of Parkinson's disease, fatigue, and level of physical activity on gait during the approach to and crossing an obstacle during gait. Forty participants were stratified to people with Parkinson's disease active and inactive, and control individuals active and inactive. Participants walked on an 8 m walkway and stepped over an obstacle placed at the middle (4 m). They performed three trials before and after repeated sit-to-stand (rSTS)-induced fatigue state. Maximum voluntary force was assessed before and after rSTS. We measured the length, width, duration, and velocity of the approach (stride before obstacle) and crossing (step over the obstacle) phases and the leading and trailing placements and clearance during crossing phase. Fatigue trait was determined by multidimensional fatigue inventory. Before rSTS, people with Parkinson's disease inactive vs. other subgroups approached the obstacle using 18-28% shorter, wider and slower steps and crossed the obstacle slower (all p < 0.04). After rSTS, people with Parkinson's disease inactive increased (23-34%) stride length and velocity and decreased (-21%) the step width (p < 0.01). People with Parkinson's disease approached the obstacle similarly to control individuals. Physical activity minimizes Parkinson's disease-typical gait impairments during obstacle negotiation and affords a protective effect against fatigue-effects on obstacle negotiation

    Age-specific modulation of intermuscular beta coherence during gait before and after experimentally induced fatigue

    Get PDF
    We examined the effects of age on intermuscular beta-band (15-35 Hz) coherence during treadmill walking before and after experimentally induced fatigue. Older (n = 12) and younger (n = 12) adults walked on a treadmill at 1.2 m/s for 3 min before and after repetitive sit-to-stand, rSTS, to induce muscle fatigability. We measured stride outcomes and coherence from 100 steps in the dominant leg for the synergistic (biceps femoris (BF)-semitendinosus, rectus femoris (RF)-vastus lateralis (VL), gastrocnemius lateralis (GL)-Soleus (SL), tibialis anterior (TA)-peroneus longus (PL)) and for the antagonistic (RF-BF and TA-GL) muscle pairs at late swing and early stance. Older vs. younger adults had 43-62% lower GL-SL, RF-VL coherence in swing and TA-PL and RF-VL coherence in stance. After rSTS, RF-BF coherence in late swing decreased by similar to 20% and TA-PL increased by 16% independent of age (p = 0.02). Also, GL-SL coherence decreased by similar to 23% and increased by similar to 23% in younger and older, respectively. Age affects the oscillatory coupling between synergistic muscle pairs, delivered presumably via corticospinal tracts, during treadmill walking. Muscle fatigability elicits age-specific changes in the common fluctuations in muscle activity, which could be interpreted as a compensation for muscle fatigability to maintain gait performance

    Older Compared With Younger Adults Performed 467 Fewer Sit-to-Stand Trials, Accompanied by Small Changes in Muscle Activation and Voluntary Force

    Get PDF
    Background: Repetitive sit-to-stand (rSTS) is a fatigue perturbation model to examine the age-effects on adaptability in posture and gait, yet the age-effects on muscle activation during rSTS per se are unclear. We examined the effects of age and exhaustive rSTS on muscle activation magnitude, onset, and duration during ascent and descent phases of the STS task. Methods: Healthy older (n = 12) and younger (n = 11) adults performed rSTS, at a controlled frequency dictated by a metronome (2 s for cycle), to failure or for 30 min. We assessed muscle activation magnitude, onset, and duration of plantar flexors, dorsiflexors, knee flexors, knee extensors, and hip stabilizers during the initial and late stages of rSTS. Before and after rSTS, we measured maximal voluntary isometric knee extension force, and rate of perceived exertion, which was also recorded during rSTS task. Results: Older vs. younger adults generated 35% lower maximum voluntary isometric knee extension force. During the initial stage of rSTS, older vs. younger adults activated the dorsiflexor 60% higher, all 5 muscle groups 37% longer, and the hip stabilizers 80% earlier. Older vs. younger adults completed 467 fewer STS trials and, at failure, their rate of perceived exertion was ~17 of 20 on the Borg scale. At the end of the rSTS, maximum voluntary isometric knee extension force decreased 16% similarly in older and younger, as well as the similar age groups decline in activation of the dorsiflexor and knee extensor muscles (all p < 0.05). Conclusion: By performing 467 fewer STS trials, older adults minimized the potential effects of fatigability on muscle activation, voluntary force, and motor function. Such a sparing effect may explain the minimal changes in gait after rSTS reported in previous studies, suggesting a limited scope of this perturbation model to probe age-effects on muscle adaptation in functional tasks

    Center of pressure responses to unpredictable external perturbations indicate low accuracy in predicting fall risk in people with Parkinson's disease

    Get PDF
    Falls are associated with impairment in postural control in people with Parkinson's disease (PwPD). We aimed to predict the fall risk through models combining postural responses with clinical and cognitive measures. Also, we compared the center of pressure (CoP) between PwPD fallers and non-fallers after unpredictable external perturbations. We expected that CoP parameters combined with clinical and cognitive measures would predict fall risk. Seventy-five individuals participated in the study. CoP parameters were measured during postural responses through five trials with unpredictable translations of the support-surface in posterior direction. Range and peak of CoP were analyzed in two periods: early and late responses. Time to peak (negative peak) and recovery time were analyzed regardless of the periods. Models included the CoP parameters in early (model 1), late responses (model 2), and temporal parameters (model 3). Clinical and cognitive measures were entered into all models. Twenty-nine participants fell at least once, and 46 PwPD did not fall during 12 months following the postural assessment. Range of CoP in late responses was associated with fall risk (p = .046). However, although statistically non-significant, this parameter indicated low accuracy in predicting fall risk (area under the curve = 0.58). Fallers presented a higher range of CoP in early responses than non-fallers (p = .033). In conclusion, although an association was observed between fall risk and range of CoP in late responses, this parameter indicated low accuracy in predicting fall risk in PwPD. Also, fallers demonstrate worse postural control during early responses after external perturbations than non-fallers, measured by CoP parameters

    The effects of acute exercise on serum biomarkers in diabetics rats

    Get PDF
    INTRODUÇÃO: As respostas ao exercício agudo dos biomarcadores, como a fosfatase alcalina (FA) e a creatina quinase (CK) séricas têm sido pouco investigadas em ratos diabéticos. OBJETIVOS: Verificar os efeitos do exercício físico aeróbio agudo sobre as concentrações de CK e FA, bem como, avaliar o estado hídrico em ratos diabéticos experimentais. MATERIAIS E MÉTODOS: Foram utilizados ratos Wistar machos, adultos jovens, distribuídos em dois grupos: diabéticos (DA) e controles (CA). O diabetes foi induzido por meio da administração de aloxana monoidratado Sigma(r) (32 mg/kg de peso corporal). Duas semanas após confirmação do diabetes, ambos os grupos foram submetidos a uma sessão aguda de natação por 30 min, com carga aeróbia (4,5 % do peso corporal). Foram avaliados: glicose, hematócrito, CK, FA, albumina e a cinética de lactato durante o exercício por meio de coletas 25 µL de sangue da cauda dos animais, nos minutos 0, 10, 20 e 30 de exercício. RESULTADOS: ANOVA de dois fatores para medidas repetidas e o teste post hoc de Tukey apontaram diminuição significativa dos valores de glicemia após o exercício para o grupo DA, aumento significativo de CK pós-exercício para o grupo DA, aumento significativo de hematócrito para ambos os grupos após exercício e manutenção da FA após exercício para o grupo DA. CONCLUSÃO: O exercício agudo aeróbio foi eficiente no controle dos níveis glicêmicos de ratos diabéticos. Entretanto, deve ser aplicado com cautela, pois induziu altos valores de CK, sugerindo possíveis lesões teciduais2013235INTRODUCTION: The responses to acute exercise on biomarkers, such as alkaline phosphatase (ALP) and creatine kinase (CK) serum levels have been little investigated in diabetic rats. OBJECTIVES: To investigate the effects of acute aerobic exercise on the concentrations of CK and ALP as well as evaluating the hydration status in diabetic rats. MATERIALS AND METHODS: Were used male Wistar rats, young adults, divided into two groups: diabetic (DA) and controls (CA). The diabetes was induced in the rats by administration of alloxan monohydrate Sigma(r) (32 mg/kg body weight). Two weeks after confirmation of diabetes, both groups were subjected to an acute swim session for 30 min, with aerobic load (4.5% body weight). Glucose, hematocrit, CK, ALP, albumin and lactate kinetics during exercise were evaluated by collecting 25µL of blood from the tail of the animals in minutes 0, 10, 20 and 30 of exercise. RESULTS: Two-way ANOVA for repeated measures and post hoc Tukey test showed significant decrease of glycemia after exercise for the DA group, significant increase in CK after exercise for the DA group, significant increase in hematocrit for both groups after exercise and maintenance of ALP after exercise for the DA group. CONCLUSION: The acute aerobic exercise was effective in controlling glucose levels in diabetic rats. However, it should be applied with caution, because it induced high CK values, suggesting possible tissue damagesem informaçã

    Double obstacles increase gait asymmetry during obstacle crossing in people with Parkinson’s disease and healthy older adults: A pilot study

    Get PDF
    Gait asymmetry during unobstructed walking in people with Parkinson's disease (PD) has been well documented. However, under complex situations, such as environments with double obstacles, gait asymmetry remains poorly understood in PD. Therefore, the aim of this study was to analyze inter-limb asymmetry while crossing a single obstacle and double obstacles (with different distances between them) in people with PD and healthy older adults. Nineteen people with PD and 19 healthy older people performed three conditions: (i) walking with one obstacle (Single); (ii) walking with two obstacles with a 50 cm distance between them (Double-50); (iii) walking with two obstacles with a 108 cm distance between them (Double-108). The participants performed the obstacle crossing with both lower limbs. Asymmetry Index was calculated. We found that people with PD presented higher leading and trailing toe clearance asymmetry than healthy older people. In addition, participants increased asymmetry in the Double-50 compared to Single condition. It can be concluded that people with PD show higher asymmetry during obstacle crossing compared to healthy older people, independently of the number of obstacles. In addition, a challenging environment induces asymmetry during obstacle crossing in both people with PD and healthy older people

    O NÍVEL DE ATIVIDADE FÍSICA INFLUENCIA O CONTROLE POSTURAL REATIVO APÓS PERTURBAÇÃO POSTURAL EXTERNA INESPERADA EM PACIENTES COM DOENÇA DE PARKINSON

    Get PDF
    O objetivo foi comparar o controle postural reativo após perturbação externa inesperada entre pacientes com doença de Parkinson (DP) fisicamente ativos e inativos. Participaram do estudo 17 pacientes com DP fisicamente ativos (DPA) e 17 fisicamente inativos (DPI). A perturbação da postura foi realizada pelo deslocamento no sentindo posterior da base de suporte. O controle postural reativo foi analisado por meio dos parâmetros eletromiográficos e do centro de pressão (CoP). O teste t de Student para amostras independentes indicou que o DPI apresentaram maior tempo para atingir o pico no músculo GM e para recuperar a posição estável, maior coativação nos músculos GM/TA e maior amplitude do deslocamento do CoP em relação ao DPA. A partir dos resultados, podemos concluir que pacientes com DP fisicamente ativos demonstram respostas posturais mais rápidas e adequadas após perturbação externa inesperada quando comparados aos fisicamente inativos, sendo um fator importante no controle postural
    corecore