14 research outputs found
Hemodynamic effect produced by microinjection of angiotensins at the caudal ventrolateral medulla of spontaneously hypertensive rats.
In the present study, the effect of caudal ventro-lateral medulla (CVLM) microinjection of angiotensin-(1-7) (Ang-(1-7)) and angiotensin II (Ang II) on mean arterial pres-sure (MAP), heart rate (HR) and pulsatile vascular blood flow (VBF; Transonic System) of the femoral, renal or mesenteric arteries was evaluated in male Wistar and spontaneously hypertensive rats (SHR) anesthetized with urethane. The vas-cular resistance (VR) was calculated by the ratio between the changes in MAP and VBF. Ang-(1-7) (40 ng) and Ang II (40 ng) microinjection into the CVLM caused similar depressor ef-fects in Wistar rats and SHR. The hypotensive effect pro-duced by Ang-(1-7) into the CVLM of Wistar rats was accom-panied by a decrease in femoral ( VR/VRbaseline 0.12 0.04 vs. 0.001 0.03; after saline) and renal ( VR/VRbase-line 0.10 0.02 vs. 0.003 0.02; after saline) vascular re-sistance. On the other hand, the Ang II hypotensive effect in Wistar rats produced only changes in renal vascular resis-tance ( VR/VRbaseline 0.16 0.02 vs. 0.003 0.02; after saline). In SHR, the hypotensive effect produced by Ang-(1-7) and Ang II caused decrease in renal vascular resistance ( VR/VRbaseline 0.18 0.03 and 0.13 0.01, respectively, as compared with saline, VR/VRbaseline 0.06 0.02), but did not alter the femoral or mesenteric vascular resistance. These data show that Ang II and Ang-(1-7) hypotensive effect at the CVLM involves the participation of different vascular beds. Further, the lack of involvement of the femoral vascular bed in SHR suggests that hypertension may induce alteration in the neural control of the different vascular beds, at least at the CVLM
Predictors and reference equations for augmentation index, an arterial stiffness marker, in healthy children and adolescents
OBJECTIVES: To investigate predictors and propose reference equations for the augmentation index normalized to 75 bpm heart rate (AIx@75) in healthy children and adolescents. METHODS: This was a cross-sectional, observational study involving 134 healthy children and adolescents aged 9 to 19 years old. Participants were categorized into child (n=53) and adolescent (n=81) groups, as well as into male (n=69) and female (n=65) groups. We evaluated AIx@75, vascular and hemodynamic parameters, anthropometric data, physical activity profile, and quality of life (Peds-QL4.0; physical, emotional, social and school domains). RESULTS: The predictors of AIx@75 in the whole sample were age, peripheral diastolic blood pressure (pDBP), mean arterial pressure, pulse pressure amplification (PPA), systolic volume (SV), cardiac index (CI), and pulse wave velocity (PWV; R2=80.47%). In the male group, the predictors of AIx@75 were SV, CI, total vascular resistence (TVR), and PWV (R2=78.56%), while in the female group, they were pDBP, PPA, SV, and PWV (R2=82.45%). In the children, they were pDBP, PPA, SV, and PWV (R2=79.17%), while in the adolescents, they were body mass index, pDBP, PPA, SV, TVR, and PWV (R2=81.57%). CONCLUSION: In the present study, we used a representative sample from Belo Horizonte to establish normality values of AIx@75. We also identified, for the first time, independent predictors of AIx@75 in healthy children and adolescents categorized by sex and age. Determining AIx@75 reference equations may facilitate the early diagnosis of preclinical atherosclerosis and allow an objective measure of the vascular effects of therapeutic interventions aimed at modifying cardiovascular risk factors
The nonpeptide ANG-(1–7) mimic AVE 0991 attenuates cardiac remodeling and improves baroreflex sensitivity in renovascular hypertensive rats.
Aims: The nonpeptide Ang-(1–7) analog, AVE 0991, is recognized as having beneficial cardiovascular effects similar to those induced by Ang-(1–7). In this study, we evaluated the effects of AVE 0991 on cardiovascular functions and on cardiac and renal remodeling in rats with 2K1C renovascular hypertension. Main methods: Fisher rats underwent surgery to induce 2K1C renovascular hypertension and were then treated with AVE 0991 (1 or 3 mg/kg) for 28 days. At the end of treatment, the blood pressure (BP), heart rate (HR), and baroreflex sensitivity were evaluated, in conscious animals. The rats were then euthanized and the heart and kidneys removed for subsequent histological analysis. Key findings: Treatment with AVE 0991 in 2K1C rats restored the baroreflex sensitivity of both bradycardic and tachycardic components to levels comparable to those of normotensive SHAM rats. At a higher dose (3 mg/kg), AVE 0991 was also anti-hypertensive in 2K1C rats. Furthermore, AVE 0991 reduced the heart weight, thickness of myocardial fibers, number of inflammatory cells, and area of collagen deposition in the hearts of 2K1C rats compared to SHAM rats. The inflammatory process and tissue area of collagen deposition were decreased in the clipped kidney of AVE 0091-treated 2K1C rats. Significance: Our data showed that oral treatment with AVE 0991 reduces blood-pressure cardiac remodeling and improves baroreflex sensitivity in 2K1C renovascular hypertensive rats
Evidence for a role of AT 2 receptors at the CVLM in the cardiovascular changes induced by low-intensity physical activity in renovascular hypertensive rats.
In the present study, we evaluated the involvement of the rennin–angiotensin system (RAS) in the control of the blood pressure (BP), baroreceptor-mediated bradycardia and the reactivity of caudal ventrolateral medulla (CVLM) neurons to Ang II and to AT2 receptor antagonist in sedentary or trained renovascularhypertensive rats. Physical activity did not significantly change the baseline mean arterial pressure (MAP), heart rate (HR) or the sensitivity of the baroreflex bradycardia in normotensive Sham rats. However, in 2K1C hypertensive rats, physical activity induced a significant fall in baseline MAP and HR and produced an improvement of the baroreflex function (bradycardic component). The microinjections of Ang II into the CVLM produced similar decreases in MAP in all groups, Sham and 2K1C, sedentary and trained rats. The hypotensive effect of Ang II at the CVLM was blocked by previous microinjection of the AT2 receptors antagonist, PD123319, in all groups of rats. Unexpectedly, microinjection of PD123319 at the CVLM produced a depres-sor effect in 2K1C sedentary that was attenuated in 2K1C trained rats. No significant changes in MAP were observed after PD123319 i n Sham rats, sedentary or trained. These data showed that low-intensity physical activity is effective in lowering blood pressure and restoring the sensitivity of t he baroreflex bradycardia, however these cardiovascular effects are not accompanied by changes i n the responsiveness to Ang II at CVLM in normotensive or hypertensive, 2K1C rats. In ad dition, the blood pressure changes observed after AT 2 blockade in 2K1C rats suggest that hypertension may trigger an imbalance of AT1 /AT 2 receptors at the CVLM that may be restored, at least in part, by low-intensity physical activit
Evidence for a role of AT 2 receptors at the CVLM in the cardiovascular changes induced by low-intensity physical activity in renovascular hypertensive rats.
In the present study, we evaluated the involvement of the rennin–angiotensin system (RAS) in the control of the blood pressure (BP), baroreceptor-mediated bradycardia and the reactivity of caudal ventrolateral medulla (CVLM) neurons to Ang II and to AT2 receptor antagonist in sedentary or trained renovascularhypertensive rats. Physical activity did not significantly change the baseline mean arterial pressure (MAP), heart rate (HR) or the sensitivity of the baroreflex bradycardia in normotensive Sham rats. However, in 2K1C hypertensive rats, physical activity induced a significant fall in baseline MAP and HR and produced an improvement of the baroreflex function (bradycardic component). The microinjections of Ang II into the CVLM produced similar decreases in MAP in all groups, Sham and 2K1C, sedentary and trained rats. The hypotensive effect of Ang II at the CVLM was blocked by previous microinjection of the AT2 receptors antagonist, PD123319, in all groups of rats. Unexpectedly, microinjection of PD123319 at the CVLM produced a depres-sor effect in 2K1C sedentary that was attenuated in 2K1C trained rats. No significant changes in MAP were observed after PD123319 i n Sham rats, sedentary or trained. These data showed that low-intensity physical activity is effective in lowering blood pressure and restoring the sensitivity of t he baroreflex bradycardia, however these cardiovascular effects are not accompanied by changes i n the responsiveness to Ang II at CVLM in normotensive or hypertensive, 2K1C rats. In ad dition, the blood pressure changes observed after AT 2 blockade in 2K1C rats suggest that hypertension may trigger an imbalance of AT1 /AT 2 receptors at the CVLM that may be restored, at least in part, by low-intensity physical activit
Angiotensin-(1-7) antagonist, A-779, microinjection into the caudal ventrolateral medulla of renovascular hypertensive rats restores baroreflex bradycardia.
In the present study we evaluated the effect of caudal ventrolateral medulla (CVLM) microinjection of the main angiotensin (Ang) peptides, Ang II and Ang-(1-7), and their selective antagonists on baseline arterial pressure (AP) and on baroreceptor-mediated bradycardia in renovascular hypertensive rats (2K1C). Microinjection of Ang II and Ang-(1-7) into the CVLM of 2K1C rats produced similar decrease in AP as observed in Sham rats. In both Sham and 2K1C, the hypotensive effect of Ang II and Ang-(1-7) at the CVLM was blocked, for up to 30 min, by previous CVLM microinjection of the Ang II AT 1 receptor antagonist, Losartan, and Ang-(1-7) Mas antagonist, A-779, respectively. As expected, the baroreflex bradycardia was lower in 2K1C in comparison to Sham rats. CVLM microinjection of A-779 improved the sensitivity of baroreflex bradycardia in 2K1C hypertensive rats. In contrast, Losartan had no effect on the baroreflex bradycardia in either 2K1C or Sham rats. These results suggest that Ang-(1-7) at the CVLM may contribute to the low sensitivity of the baroreflex control of heart rate in renovascular hypertensive rat
Angiotensin-(1-7) antagonist, A-779, microinjection into the caudal ventrolateral medulla of renovascular hypertensive rats restores baroreflex bradycardia.
In the present study we evaluated the effect of caudal ventrolateral medulla (CVLM) microinjection of the main angiotensin (Ang) peptides, Ang II and Ang-(1-7), and their selective antagonists on baseline arterial pressure (AP) and on baroreceptor-mediated bradycardia in renovascular hypertensive rats (2K1C). Microinjection of Ang II and Ang-(1-7) into the CVLM of 2K1C rats produced similar decrease in AP as observed in Sham rats. In both Sham and 2K1C, the hypotensive effect of Ang II and Ang-(1-7) at the CVLM was blocked, for up to 30 min, by previous CVLM microinjection of the Ang II AT 1 receptor antagonist, Losartan, and Ang-(1-7) Mas antagonist, A-779, respectively. As expected, the baroreflex bradycardia was lower in 2K1C in comparison to Sham rats. CVLM microinjection of A-779 improved the sensitivity of baroreflex bradycardia in 2K1C hypertensive rats. In contrast, Losartan had no effect on the baroreflex bradycardia in either 2K1C or Sham rats. These results suggest that Ang-(1-7) at the CVLM may contribute to the low sensitivity of the baroreflex control of heart rate in renovascular hypertensive rat
Swimming training promotes cardiac remodeling and alters the expression of mRNA and protein levels involved in calcium handling in hypertensive rats.
Aim: The aim of this study was to identify the effects of swimming training on the mRNA expression and protein levels of the calcium handling proteins in the hearts of renovascular hypertensive rats submitted to swimming protocol during 6 weeks. Main methods: Fischer ratswith renovascular hypertension 2-kidney 1-clip (2K1C) and SHAMgroups were divided among sedentary and exercised groups. The exercise protocol lasted for 6 weeks (1 h/day, 5×/week), and the mean arterial pressure, cardiomyocytes hypertrophy parameters, mRNA expression and protein levels of some calcium handling proteins in the left ventricle were evaluated. Key findings: Swimming training was able to reduce the levels of mean arterial pressure in the hypertensive group compared to 2K1C SED, and to promote cardiac hypertrophy in SHAM EX and 2K1C EX groups in comparison to the respective control groups. The mRNA levels of B-type natriuretic peptide were reduced in the 2K1C EX when compared to 2K1C SED. The mRNA and protein levels of the sarcoplasmic reticulumCa2+-ATPase increased after the swimming training in SHAMand 2K1C groups. ThemRNA and protein levels of phospholamban, displayed an increase in their levels in the exercised SHAMand in hypertensive rats in comparison to their respective controls; while mRNA levels of Na+/Ca2+ exchanger was reduced in the left ventricle comparing to the sedentary hypertensive rats. Significance: Taken altogether,we provide evidence that the aerobic training may lead to cardiac remodeling, and modulate the calcium handling proteins expression in the heart of hypertensive rats
Cardiac and renal effects induced by different exercise workloads in renovascular hypertensive rats.
We examined the effect of exercise training (Ex) without (Ex 0%) or with a 3% workload (Ex 3%) on different cardiac and renal
parameters in renovascular hypertensive (2K1C) male Fisher rats weighing 150-200 g. Ex was performed for 5 weeks, 1 h/day,
5 days/week. Ex 0% or Ex 3% induced similar attenuation of baseline mean arterial pressure (MAP, 119 ± 5 mmHg in 2K1C Ex
0%, N = 6, and 118 ± 5 mmHg in 2K1C Ex 3%, N = 11, vs 99 ± 4 mmHg in sham sedentary (Sham Sed) controls, N = 10) and
heart rate (HR, bpm) (383 ± 13 in 2K1C Ex 0%, N = 6, and 390 ± 14 in 2K1C Ex 3%, N = 11 vs 371 ± 11 in Sham Sed, N = 10).
Ex 0%, but not Ex 3%, improved baroreflex bradycardia (0.26 ± 0.06 ms/mmHg, N = 6, vs 0.09 ± 0.03 ms/mmHg in 2K1C Sed,
N = 11). Morphometric evaluation suggested concentric left ventricle hypertrophy in sedentary 2K1C rats. Ex 0% prevented
concentric cardiac hypertrophy, increased cardiomyocyte diameter and decreased cardiac vasculature thickness in 2K1C rats. In
contrast, in 2K1C, Ex 3% reduced the concentric remodeling and prevented the increase in cardiac vasculature wall thickness,
decreased the cardiomyocyte diameter and increased collagen deposition. Renal morphometric analysis showed that Ex 3%
induced an increase in vasculature wall thickness and collagen deposition in the left kidney of 2K1C rats. These data suggest
that Ex 0% has more beneficial effects than Ex 3% in renovascular hypertensive rats