53,381 research outputs found

    Ultracold dipolar gases - a challenge for experiments and theory

    Full text link
    We present a review of recent results concerning the physics of ultracold trapped dipolar gases. In particular, we discuss the Bose-Einstein condensation for dipolar Bose gases and the BCS transition for dipolar Fermi gases. In both cases we stress the dominant role of the trap geometry in determining the properties of the system. We present also results concerning bosonic dipolar gases in optical lattices and the possibility of obtaining variety of different quantum phases in such case. Finally, we analyze various possible routes towards achieving ultracold dipolar gases.Comment: This paper is based on the lecture given by M. Lewenstein at the Nobel Symposium ''Coherence and Condensation in Quantum Systems'', Gothesburg, 4-7.12.200

    Compact stars within an asy-soft quark-meson-coupling model

    Full text link
    We investigate compact star properties within the quark meson coupling model (QMC) with a soft symmetry energy density dependence at large densities. In particular, the hyperon content and the mass/radius curves for the families of stars obtained within the model are discussed. The hyperon-meson couplings are chosen according to experimental values of the hyperon nuclear matter potentials, and possible uncertainties are considered. It is shown that a softer symmetry energy gives rise to stars with less hyperons, smaller radii and larger masses. Hyperon-meson couplings may also have a strong effect on the mass of the star.Comment: 7 pages, revtex, accepted in Phys. Rev.

    Resistively detected nuclear magnetic resonance via a single InSb two-dimensional electron gas at high temperature

    Full text link
    We report on the demonstration of the resistively detected nuclear magnetic resonance (RDNMR) of a single InSb two-dimensional electron gas (2DEG) at elevated temperatures up to 4 K. The RDNMR signal of 115In in the simplest pseudospin quantum Hall ferromagnet triggered by a large direct current shows a peak-dip line shape, where the nuclear relaxation time T1 at the peak and the dip is different but almost temperature independent. The large Zeeman, cyclotron, and exchange energy scales of the InSb 2DEG contribute to the persistence of the RDNMR signal at high temperatures.Comment: 11pages,3figure
    • …
    corecore