50,638 research outputs found

    Supersymmetric dark matter search via spin-dependent interaction with He3

    Get PDF
    The potentialities of MIMAC-He3, a MIcro-tpc MAtrix of Chambers of Helium 3, for supersymmetric dark matter search are discussed within the framework of effective MSSM models without gaugino mass unification at the GUT scale. A phenomenological study has been done to investigate the sensitivity of the MIMAC-He3 detector to neutralinos (m > 6 GeV/c2) via spin-dependent interaction with He3 as well as its complementarity to direct and indirect detection experiments. Comparison with other direct dark matter searches will be presented in a WIMP model-independent framework.Comment: 13 pages, 5 figure

    MIMAC-He3 : A Micro-TPC Matrix of Chambers of He3 for direct detection of Wimps

    Full text link
    The project of a micro-TPC matrix of chambers of \hetrois for direct detection of non-baryonic dark matter is presented. The privileged properties of He3 are highlighted. The double detection (ionization - projection of tracks) is explained and its rejection evaluated. The potentialities of MIMAC-He3 for supersymmetric dark matter search are discussed.Comment: to appear in Proc. of the 9th International Conference on Topics in Astroparticle and Underground Physics (TAUP 2005), Zaragoza, Sept. 200

    Magnetism of Substitutional Co Impurities in Graphene: Realization of Single π\pi-Vacancies

    Get PDF
    We report {\it ab initio} calculations of the structural, electronic and magnetic properties of a graphene monolayer substitutionally doped with Co (Cosub_{sub}) atoms. We focus in Co because among traditional ferromagnetic elements (Fe, Co and Ni), only Cosub_{sub} atoms induce spin-polarization in graphene. Our results show the complex magnetism of Co substitutional impurites in graphene, which is mapped into simple models such as the π\pi-vacancy and Heisenberg model. The links established in our work can be used to bring into contact the engineering of nanostructures with the results of π\pi-models in defective graphene. In principle, the structures considered here can be fabricated using electron irradiation or Ar+^+ ion bombardment to create defects and depositing Co at the same time

    Tracking Vector Magnetograms with the Magnetic Induction Equation

    Full text link
    The differential affine velocity estimator (DAVE) developed in Schuck (2006) for estimating velocities from line-of-sight magnetograms is modified to directly incorporate horizontal magnetic fields to produce a differential affine velocity estimator for vector magnetograms (DAVE4VM). The DAVE4VM's performance is demonstrated on the synthetic data from the anelastic pseudospectral ANMHD simulations that were used in the recent comparison of velocity inversion techniques by Welsch (2007). The DAVE4VM predicts roughly 95% of the helicity rate and 75% of the power transmitted through the simulation slice. Inter-comparison between DAVE4VM and DAVE and further analysis of the DAVE method demonstrates that line-of-sight tracking methods capture the shearing motion of magnetic footpoints but are insensitive to flux emergence -- the velocities determined from line-of-sight methods are more consistent with horizontal plasma velocities than with flux transport velocities. These results suggest that previous studies that rely on velocities determined from line-of-sight methods such as the DAVE or local correlation tracking may substantially misrepresent the total helicity rates and power through the photosphere.Comment: 30 pages, 13 figure

    Design of teacher assistance tools in an exploratory learning environment for algebraic generalisation

    Get PDF
    The MiGen project is designing and developing an intelligent exploratory environment to support 11-14 year-old students in their learning of algebraic generalisation. Deployed within the classroom, the system also provides tools to assist teachers in monitoring students' activities and progress. This paper describes the architectural design of these Teacher Assistance tools and gives a detailed description of one such tool, focussing in particular on the research challenges faced, and the technologies and approaches chosen to implement the necessary functionalities given the context of the project

    Massive "spin-2" theories in arbitrary D≄3D \ge 3 dimensions

    Full text link
    Here we show that in arbitrary dimensions D≄3D\ge 3 there are two families of second order Lagrangians describing massive "spin-2" particles via a nonsymmetric rank-2 tensor. They differ from the usual Fierz-Pauli theory in general. At zero mass one of the families is Weyl invariant. Such massless theory has no particle content in D=3D=3 and gives rise, via master action, to a dual higher order (in derivatives) description of massive spin-2 particles in D=3D=3 where both the second and the fourth order terms are Weyl invariant, contrary to the linearized New Massive Gravity. However, only the fourth order term is invariant under arbitrary antisymmetric shifts. Consequently, the antisymmetric part of the tensor e[ΌΜ]e_{[\mu\nu]} propagates at large momentum as 1/p21/p^2 instead of 1/p41/p^4. So, the same kind of obstacle for the renormalizability of the New Massive Gravity reappears in this nonsymmetric higher order description of massive spin-2 particles.Comment: 11 pages, 0 figure

    MIMAC-He3 : MIcro-tpc MAtrix of Chambers of He3

    Full text link
    The project of a micro-TPC matrix of chambers of He3 for direct detection of non-baryonic dark matter is outlined. The privileged properties of He3 are highlighted. The double detection (ionization - projection of tracks) will assure the electron-recoil discrimination. The complementarity of MIMAC-He3 for supersymmetric dark matter search with respect to other experiments is illustrated. The modular character of the detector allows to have different gases to get A-dependence. The pressure degreee of freedom gives the possibility to work at high and low pressure. The low pressure regime gives the possibility to get the directionality of the tracks. The first measurements of ionization at very few keVs for He3 in He4 gas are described
    • 

    corecore