11,315 research outputs found

    Hall coefficient of tantalum carbide as function of carbon content

    Get PDF
    Hall coefficient of tantalum carbide as function of carbon conten

    The jet-ISM interaction in the Outer Filament of Centaurus A

    Get PDF
    The interaction between the radio plasma ejected by the active nucleus of a galaxy and the surrounding medium is a key process that can have a strong impact on the interstellar medium of the galaxy and hence on galaxy evolution. The closest laboratory where we can observe and investigate this phenomenon is the radio galaxy Centaurus A. About 15 kpc north-east of this galaxy, a particularly complex region is found: the so-called Outer Filament where jet-cloud interactions have been proposed to occur. We investigate the presence of signatures of jet-ISM interaction by a detailed study of the kinematics of the ionized gas, expanding on previous results obtained from the HI. We observed two regions of the outer filament with VLT/VIMOS in the IFU observing mode. Emission from Hbeta and [OIII]4959,5007\AA\ is detected in both pointings. We found two distinct kinematical components of ionized gas that well match the kinematics of the nearby HI cloud. One component follows the regular kinematics of the rotating gas while the second shows similar velocities to those of the nearby HI component thought to be disturbed by an interaction with the radio jet. We suggest that the ionized and atomic gas are part of the same dynamical gas structure originating as result of the merger that shaped Centaurus A and which is regularly rotating around Centaurus A as proposed by other authors. The gas (ionized and HI) with anomalous velocities is tracing the interaction of the Large-Scale radio Jet with the ISM, suggesting that, although poorly collimated as structure, the jet is still active. However, we can exclude that a strong shock is driving the ionization of the gas. It is likely that a combination of jet entrainment and photoionization by the UV continuum from the central engine is needed in order to explain both the ionization and the kinematics of the gas in the Outer Filament.Comment: 6 pages, 6 figures, 1 table. Final version accepted for publication on A&

    The outer filament of Centaurus A as seen by MUSE

    Get PDF
    We investigate signatures of a jet-interstellar medium (ISM) interaction using optical integral-field observations of the so-called outer filament near Centaurus A, expanding on previous results obtained on a more limited area. Using the Multi Unit Spectroscopic Explorer (MUSE) on the VLT during science verification, we observed a significant fraction of the brighter emitting gas across the outer filament. The ionized gas shows complex morphology with compact blobs, arc-like structures and diffuse emission. Based on the kinematics, we identified three main components. The more collimated component is oriented along the direction of the radio jet. The other two components exhibit diffuse morphology together with arc-like structures also oriented along the radio jet direction. Furthermore, the ionization level of the gas is found to decrease from the more collimated component to the more diffuse components. The morphology and velocities of the more collimated component confirm our earlier results that the outer filament and the nearby HI cloud are likely partially shaped by the lateral expansion of the jet. The arc-like structures embedded within the two remaining components are the clearest evidence of a smooth jet-ISM interaction along the jet direction. This suggests that, although poorly collimated, the radio jet is still active and has an impact on the surrounding gas. This result indicates that the effect on the ISM of even low-power radio jets should be considered when studying the influence Active Galactic Nuclei can have on their host galaxy.Comment: 5 pages, 3 figures, Accepted for publication by A&

    Faster annealing schedules for quantum annealing

    Get PDF
    New annealing schedules for quantum annealing are proposed based on the adiabatic theorem. These schedules exhibit faster decrease of the excitation probability than a linear schedule. To derive this conclusion, the asymptotic form of the excitation probability for quantum annealing is explicitly obtained in the limit of long annealing time. Its first-order term, which is inversely proportional to the square of the annealing time, is shown to be determined only by the information at the initial and final times. Our annealing schedules make it possible to drop this term, thus leading to a higher order (smaller) excitation probability. We verify these results by solving numerically the time-dependent Schrodinger equation for small size systemsComment: 10 pages, 5 figures, minor correction

    Spatially Resolved Species Measurements in a GO2/GH2 Propellant Rocket

    Get PDF
    The objective of the current work is to develop an non-intrusive technique to experimentally determine the major species and temperature field in the combustion chamber of a uni-element rocket for a GO2/GH2 propellant combination

    Quantum baker maps with controlled-NOT coupling

    Full text link
    The characteristic stretching and squeezing of chaotic motion is linearized within the finite number of phase space domains which subdivide a classical baker map. Tensor products of such maps are also chaotic, but a more interesting generalized baker map arises if the stacking orders for the factor maps are allowed to interact. These maps are readily quantized, in such a way that the stacking interaction is entirely attributed to primary qubits in each map, if each subsystem has power-of-two Hilbert space dimension. We here study the particular example of two baker maps that interact via a controlled-not interaction. Numerical evidence indicates that the control subspace becomes an ideal Markovian environment for the target map in the limit of large Hilbert space dimension.Comment: 8 page

    Residual Energies after Slow Quantum Annealing

    Full text link
    Features of the residual energy after the quantum annealing are investigated. The quantum annealing method exploits quantum fluctuations to search the ground state of classical disordered Hamiltonian. If the quantum fluctuation is reduced sufficiently slowly and linearly by the time, the residual energy after the quantum annealing falls as the inverse square of the annealing time. We show this feature of the residual energy by numerical calculations for small-sized systems and derive it on the basis of the quantum adiabatic theorem.Comment: 4 pages, 2 figure

    Strong Correlations in Electron Doped Phthalocyanine Conductors Near Half Filling

    Full text link
    We propose that electron doped nontransition metal-phthalocyanines (MPc) like ZnPc and MgPc, similar to those very recently reported, should constitute novel strongly correlated metals. Due to orbital degeneracy, Jahn-Teller coupling and Hund's rule exchange, and with a large on-site Coulomb repulsion, these molecular conductors should display, particularly near half filling at two electrons/molecule, very unconventional properties, including Mott insulators, strongly correlated superconductivity, and other intriguing phases.Comment: 4 pages, 1 figure, submited to PR

    Convergence theorems for quantum annealing

    Get PDF
    We prove several theorems to give sufficient conditions for convergence of quantum annealing, which is a protocol to solve generic optimization problems by quantum dynamics. In particular the property of strong ergodicity is proved for the path-integral Monte Carlo implementation of quantum annealing for the transverse Ising model under a power decay of the transverse field. This result is to be compared with the much slower inverse-log decay of temperature in the conventional simulated annealing. Similar results are proved for the Green's function Monte Carlo approach. Optimization problems in continuous space of particle configurations are also discussed.Comment: 19 page
    corecore