505 research outputs found

    A semiconductor source of triggered entangled photon pairs?

    Full text link
    The realisation of a triggered entangled photon source will be of great importance in quantum information, including for quantum key distribution and quantum computation. We show here that: 1) the source reported in ``A semiconductor source of triggered entangled photon pairs''[1. Stevenson et al., Nature 439, 179 (2006)]} is not entangled; 2) the entanglement indicators used in Ref. 1 are inappropriate, relying on assumptions invalidated by their own data; and 3) even after simulating subtraction of the significant quantity of background noise, their source has insignificant entanglement.Comment: 5 pages in pre-print format, 1 tabl

    Diagnosis, prescription and prognosis of a Bell-state filter by quantum process tomography

    Full text link
    Using a Hong-Ou-Mandel interferometer, we apply the techniques of quantum process tomography to characterize errors and decoherence in a prototypical two-photon operation, a singlet-state filter. The quantum process tomography results indicate a large asymmetry in the process and also the required operation to correct for this asymmetry. Finally, we quantify errors and decoherence of the filtering operation after this modification.Comment: 4 pages, 4 figure

    Quantum filter for non-local polarization properties of photonic qubits

    Get PDF
    We present an optical filter that transmits photon pairs only if they share the same horizontal or vertical polarization, without decreasing the quantum coherence between these two possibilities. Various applications for entanglement manipulations and multi-photon qubits are discussed.Comment: 7 pages, including one figure, short discussion of error sources adde

    Properties of implanted and CVD incorporated nitrogen-vacancy centers: preferential charge state and preferential orientation

    Get PDF
    The combination of the long electron state spin coherence time and the optical coupling of the ground electronic states to an excited state manifold makes the nitrogen-vacancy (NV) center in diamond an attractive candidate for quantum information processing. To date the best spin and optical properties have been found in centers deep within the diamond crystal. For useful devices it will be necessary to engineer NVs with similar properties close to the diamond surface. We report on properties including charge state control and preferential orientation for near surface NVs formed either in CVD growth or through implantation and annealing

    Sub-microsecond correlations in photoluminescence from InAs quantum dots

    Full text link
    Photon correlation measurements reveal memory effects in the optical emission of single InAs quantum dots with timescales from 10 to 800 ns. With above-band optical excitation, a long-timescale negative correlation (antibunching) is observed, while with quasi-resonant excitation, a positive correlation (blinking) is observed. A simple model based on long-lived charged states is presented that approximately explains the observed behavior, providing insight into the excitation process. Such memory effects can limit the internal efficiency of light emitters based on single quantum dots, and could also be problematic for proposed quantum-computation schemes.Comment: 8 pages, 8 figure

    On the indistinguishability of Raman photons

    Full text link
    We provide a theoretical framework to study the effect of dephasing on the quantum indistinguishability of single photons emitted from a coherently driven cavity QED Λ\Lambda-system. We show that with a large excited-state detuning, the photon indistinguishability can be drastically improved provided that the fluctuation rate of the noise source affecting the excited state is fast compared with the photon emission rate. In some cases a spectral filter is required to realize this improvement, but the cost in efficiency can be made small.Comment: 18 pages, 3 figures, final versio

    Enabling single-mode behavior over large areas with photonic Dirac cones

    Full text link
    Many of graphene's unique electronic properties emerge from its Dirac-like electronic energy spectrum. Similarly, it is expected that a nanophotonic system featuring Dirac dispersion will open a path to a number of important research avenues. To date, however, all proposed realizations of a photonic analog of graphene lack fully omnidirectional out-of-plane light confinement, which has prevented creating truly realistic implementations of this class of systems. Here we report on a novel route to achieve all-dielectric three-dimensional photonic materials featuring Dirac-like dispersion in a quasi-two-dimensional system. We further discuss how this finding could enable a dramatic enhancement of the spontaneous emission coupling efficiency (the \beta-factor) over large areas, defying the common wisdom that the \beta-factor degrades rapidly as the size of the system increases. These results might enable general new classes of large-area ultralow-threshold lasers, single-photon sources, quantum information processing devices and energy harvesting systems

    Creating diamond color centers for quantum optical applications

    Full text link
    Nitrogen vacancy (NV) centers in diamond have distinct promise as solid-state qubits. This is because of their large dipole moment, convenient level structure and very long room-temperature coherence times. In general, a combination of ion irradiation and subsequent annealing is used to create the centers, however for the rigorous demands of quantum computing all processes need to be optimized, and decoherence due to the residual damage caused by the implantation process itself must be mitigated. To that end we have studied photoluminescence (PL) from NV−^-, NV0^0 and GR1 centers formed by ion implantation of 2MeV He ions over a wide range of fluences. The sample was annealed at 600∘600^{\circ}C to minimize residual vacancy diffusion, allowing for the concurrent analysis of PL from NV centers and irradiation induced vacancies (GR1). We find non-monotic PL intensities with increasing ion fluence, monotonic increasing PL in NV0^0/NV−^- and GR1/(NV0^0 + NV1^1) ratios, and increasing inhomogeneous broadening of the zero-phonon lines with increasing ion fluence. All these results shed important light on the optimal formation conditions for NV qubits. We apply our findings to an off-resonant photonic quantum memory scheme using vibronic sidebands

    Production of oriented nitrogen-vacancy color centers in synthetic diamond

    Full text link
    The negatively charged nitrogen-vacancy (NV-) center in diamond is an attractive candidate for applications that range from magnetometry to quantum information processing. Here we show that only a fraction of the nitrogen (typically < 0.5 %) incorporated during homoepitaxial diamond growth by Chemical Vapor Deposition (CVD) is in the form of undecorated NV- centers. Furthermore, studies on CVD diamond grown on (110) oriented substrates show a near 100% preferential orientation of NV- centers along only the [111] and [-1-11] directions, rather than the four possible orientations. The results indicate that NV centers grow in as units, as the diamond is deposited, rather than by migration and association of their components. The NV unit of the NVH- is similarly preferentially oriented, but it is not possible to determine whether this defect was formed by H capture at a preferentially aligned NV center or as a complete unit. Reducing the number of NV orientations from 4 orientations to 2 orientations should lead to increased optically-detected magnetic resonance contrast and thus improved magnetic sensitivity in ensemble-based magnetometry.Comment: 13 Pages (inlcuding suplementary information), 4 figure
    • 

    corecore