454 research outputs found

    Curcumin loaded polymeric vs. Lipid nanoparticles: Antioxidant effect on normal and hypoxic olfactory ensheathing cells

    Get PDF
    Background: Curcumin (Cur) shows anti-inflammatory and antioxidant effects on central nervous system diseases. The aim of this study was to develop Cur-loaded polymeric and lipid nanoparticles for intranasal delivery to enhance its stability and increase antioxidant effect on olfactory ensheathing cells (OECs). Methods: The nanosuspensions were subjected to physico-chemical and technological evaluation through photon correlation spectroscopy (PCS), differential scanning calorimetry (DSC) and UV-spectrophotometry. The cytotoxicity studies of nanosuspensions were carried out on OECs. A viability test was performed after 24 h of exposure of OECs to unloaded and curcumin-loaded nanosuspensions. The potential protective effect of Cur was assessed on hypoxic OECs cells. Uptake studies were performed on the same cell cultures. Thermal analysis was performed to evaluate potential interaction of Cur with a 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) biomembrane model. Results: PCS analysis indicated that lipid and polymeric nanosuspensions showed a mean size of 127.10 and 338.20 nm, respectively, high homogeneity and negative zeta potential. Incorporation of Cur into both nanocarriers increased drug stability up to 135 days in cryoprotected freeze-dried nanosuspensions. Cell viability was improved when hypoxic OECs were treated with Cur-loaded polymeric and lipid nanosuspensions compared with the control. Conclusions: Both nanocarriers could improve the stability of Cur as demonstrated by technological studies. Biological studies revealed that both nanocarriers could be used to deliver Cur by intranasal administration for brain targeting

    The neurochaperonopathies: Anomalies of the chaperone system with pathogenic effects in neurodegenerative and neuromuscular disorders

    Get PDF
    The chaperone (or chaperoning) system (CS) constitutes molecular chaperones, co-chaperones, and chaperone co-factors, interactors and receptors, and its canonical role is protein quality control. A malfunction of the CS may cause diseases, known as the chaperonopathies. These are caused by qualitatively and/or quantitatively abnormal molecular chaperones. Since the CS is ubiquitous, chaperonopathies are systemic, affecting various tissues and organs, playing an etiologic-pathogenic role in diverse conditions. In this review, we focus on chaperonopathies involved in the pathogenic mechanisms of diseases of the central and peripheral nervous systems: the neurochaperonopathies (NCPs). Genetic NCPs are linked to pathogenic variants of chaperone genes encoding, for example, the small Hsp, Hsp10, Hsp40, Hsp60, and CCT-BBS (chaperonin-containing TCP-1-Bardet\u2013Biedl syndrome) chaperones. Instead, the acquired NCPs are associated with malfunctional chaperones, such as Hsp70, Hsp90, and VCP/p97 with aberrant post-translational modifications. Awareness of the chaperonopathies as the underlying primary or secondary causes of disease will improve diagnosis and patient management and open the possibility of investigating and developing chaperonotherapy, namely treatment with the abnormal chaperone as the main target. Positive chaperonotherapy would apply in chaperonopathies by defect, i.e., chaperone insufficiency, and consist of chaperone replacement or boosting, whereas negative chaperonotherapy would be pertinent when a chaperone actively participates in the initiation and progression of the disease and must be blocked and eliminated

    Water extract of Cryphaea heteromalla (Hedw.) D. Mohr bryophyte as a natural powerful source of biologically active compounds

    Get PDF
    Bryophytes comprise of the mosses, liverworts, and hornworts. Cryphaea heteromalla, (Hedw.) D. Mohr, is a non-vascular lower plant belonging to mosses group. To the date, the most chemically characterized species belong to the liverworts, while only 3.2% and 8.8% of the species belonging to the mosses and hornworts, respectively, have been investigated. In this work, we present Folin–Ciocalteu and oxygen radical absorbance capacity (ORAC) data related to crude extracts of C. heteromalla obtained by three different extraction solvents: pure water (WT), methanol:water (80:20 v/v) (MET), and ethanol:water (80:20 v/v) (ETH). The water extract proved to be the best solvent showing the highest content of biophenols and the highest ORAC value. The C. heteromalla-WT extract was investigated by HPLC-TOF/MS (High Performance Liquid Chromatography-Time of Flight/Mass Spectrometry) allowing for the detection of 14 compounds, five of which were phenolic compounds, derivatives of benzoic, caffeic, and coumaric acids. Moreover, the C. heteromalla WT extract showed a protective effect against reactive oxygen species (ROS) generation induced by tert-butyl hydroperoxide (TBH) on the murine NIH-3T3 fibroblast cell line

    fatigue life evaluation of car front halfshaft

    Get PDF
    Abstract The present paper is the result of the collaboration between the Engineering Department of Messina University and the car company Maserati S.p.A. The aim of this paper is to determine the T-N torsion fatigue curve at R= -1 of the mechanical system "front halfshaft" of an existing car. In particular, experimental fatigue tests were carried out in the laboratories of the Engineering Department of the University of Messina. Torsion fatigue tests of the entire mechanical system were carried out on 15 different front halfshafts. Evaluations of the crack propagation and of failure analysis were made to determine the causes of breakage. In conclusion, the T-N fatigue curve of the mechanical system "front halfshaft" has been obtained

    Therapeutic and Metagenomic Potential of the Biomolecular Therapies against Periodontitis and the Oral Microbiome: Current Evidence and Future Perspectives

    Get PDF
    The principles of periodontal therapy are based on the control of microbial pathogens and host factors that contribute to biofilm dysbiosis, with the aim of modulating the progression of periodontitis and periodontal tissue destruction. It is currently known how differently each individual responds to periodontal treatment, depending on both the bacterial subtypes that make up the dysbiotic biofilm and interindividual variations in the host inflammatory response. This has allowed the current variety of approaches for the management of periodontitis to be updated by defining the goals of target strategies, which consist of reducing the periodontopathogenic microbial flora and/or modulating the host-mediated response. Therefore, this review aims to update the current variety of approaches for the management of periodontitis based on recent target therapies. Recently, encouraging results have been obtained from several studies exploring the effects of some targeted therapies in the medium- and long-term. Among the most promising target therapies analyzed and explored in this review include: cell-based periodontal regeneration, mediators against bone resorption, emdogain (EMD), platelet-rich plasma, and growth factors. The reviewed evidence supports the hypothesis that the therapeutic combination of epigenetic modifications of periodontal tissues, interacting with the dysbiotic biofilm, is a key step in significantly reducing the development and progression of disease in periodontal patients and improving the therapeutic response of periodontal patients. However, although studies indicate promising results, these need to be further expanded and studied to truly realize the benefits that targeted therapies could bring in the treatment of periodontitis

    Prompt dipole radiation in fusion reactions

    Get PDF
    The prompt gamma ray emission was investigated in the 16A MeV energy region by means of the 36,40Ar+96,92Zr fusion reactions leading to a compound nucleus in the vicinity of 132Ce. We show that the prompt radiation, which appears to be still effective at such a high beam energy, has an angular distribution pattern consistent with a dipole oscillation along the symmetry axis of the dinuclear system. The data are compared with calculations based on a collective bremsstrahlung analysis of the reaction dynamics

    Agarose/κ-carrageenan-based hydrogel film enriched with natural plant extracts for the treatment of cutaneous wounds

    Get PDF
    Hydrogels for complex and chronic wound dressings must be conformable, absorb and retain wound exudates and maintain hydration. They can incorporate and release bioactive molecules that can accelerate the healing process. Wound dressings have to be in contact with the wound and epidermis, even for long periods, without causing adverse effects. Hydrogel dressing formulations based on biopolymers derived from terrestrial or marine flora can be relatively inexpensive and well tolerated. In the present article hydrogel films composed by agarose (1.0 wt%), κ-carrageenan at three different concentrations (0.5, 1.0 and 1.5 wt%) and glycerol (3.0 wt%) were prepared without recourse to crosslinking agents, and characterized for their mechanical properties, morphology, swelling and erosion behavior. The films resulted highly elastic and able to absorb and retain large amounts of fluids without losing their integrity. One of the films was loaded with the aqueous extract from Cryphaea heteromalla (Hedw.) D. Mohr for its antioxidant properties. Absence of cytotoxicity and ability to reduce the oxidative stress were demonstrated on NIH-3T3 fibroblast cell cultures. These results encourage further biological evaluations to assess their impact on the healing process

    Upgrade of the experimental Facilities at LNS

    Get PDF
    A feasibility study to build an helical orbit spectrometer using the SOLE magnetic field is presented in the more general context of the upgrade project of the LNS facilities. It includes the upgrade of the superconducting cyclotron to deliver high-intensity beams and the design of a new fragment separator optimized to match the beam optics of the secondary beams produced by projectile fragmentation. The main features of a helical-orbit spectrometer together with simulations performed using the SOLE magnetic field are presented and compared to the results obtained using a homogeneous solenoid field. The effects related to the geometry of the detection array and to the beam spot size on the detected impact point distribution and on the recostruction of the emission angle are also discussed
    corecore