671 research outputs found

    Host range of SARS-CoV-2 and implications for public health

    Get PDF

    Expression of the arsenite oxidation regulatory operon in Rhizobium sp. str. NT-26 is under the control of two promoters that respond to different environmental cues

    Get PDF
    Rhizobium sp. str. NT-26 is a gram-negative facultative chemolithoautotrophic arsenite oxidiser that has been used as a model organism to study various aspects of arsenite oxidation including the regulation of arsenite oxidation. The three regulatory genes, aioX, aioS and aioR, are co-transcribed when NT-26 was grown in the presence or absence of arsenite. The aioXSR operon is up-regulated in stationary phase but not by the presence of arsenite in the growth medium. The two transcription start sites upstream of aioX were determined which led to the identification of two promoters, the housekeeping promoter RpoD and the growth-phase dependent promoter RpoE2. Promoter-lacZ fusions confirmed their constitutive and stationary phase expressions. The involvement of the NT-26 sigma factor RpoE2 in acting on the NT-26 RpoE2 promoter was confirmed in vivo in E. coli, which lacks a rpoE2 homologue, using a strain carrying both the promoter-lacZ fusion and the NT-26 rpoE2 gene. An in silico approach was used to search for other RpoE2 promoters and AioR-binding motifs and led to the identification of other genes that could be regulated by these proteins including those involved in quorum sensing, chemotaxis and motility expanding the signalling networks important for the microbial metabolism of arsenite

    Large-scale network analysis captures biological features of bacterial plasmids

    Get PDF
    Many bacteria can exchange genetic material through horizontal gene transfer (HGT) mediated by plasmids and plasmid-borne transposable elements. Here, we study the population structure and dynamics of over 10,000 bacterial plasmids, by quantifying their genetic similarities and reconstructing a network based on their shared k-mer content. We use a community detection algorithm to assign plasmids into cliques, which correlate with plasmid gene content, bacterial host range, GC content, and existing classifications based on replicon and mobility (MOB) types. Further analysis of plasmid population structure allows us to uncover candidates for yet undescribed replicon genes, and to identify transposable elements as the main drivers of HGT at broad phylogenetic scales. Our work illustrates the potential of network-based analyses of the bacterial ā€˜mobilomeā€™ and opens up the prospect of a natural, exhaustive classification framework for bacterial plasmids

    The active site structure and catalytic mechanism of arsenite oxidase

    Get PDF
    Arsenite oxidase is thought to be an ancient enzyme, originating before the divergence of the Archaea and the Bacteria. We have investigated the nature of the molybdenum active site of the arsenite oxidase from the Alphaproteobacterium Rhizobium sp. str. NT-26 using a combination of X-ray absorption spectroscopy and computational chemistry. Our analysis indicates an oxidized Mo(VI) active site with a structure that is far from equilibrium. We propose that this is an entatic state imposed by the protein on the active site through relative orientation of the two molybdopterin cofactors, in a variant of the RĆ¢y-Dutt twist of classical coordination chemistry, which we call the pterin twist hypothesis. We discuss the implications of this hypothesis for other putatively ancient molybdopterin-based enzymes

    Global genomic analysis of microbial biotransformation of arsenic highlights the importance of arsenic methylation in environmental and human microbiomes

    Get PDF
    Arsenic is a ubiquitous toxic element, the global cycle of which is highly affected by microbial redox reactions and assimilation into organoarsenic compounds through sequential methylation reactions. While microbial biotransformation of arsenic has been studied for decades, the past years have seen the discovery of multiple new genes related to arsenic metabolism. Still, most studies focus on a small set of key genes or a small set of cultured microorganisms. Here, we leveraged the recently greatly expanded availability of microbial genomes of diverse organisms from lineages lacking cultivated representatives, including those reconstructed from metagenomes, to investigate genetic repertoires of taxonomic and environmental controls on arsenic metabolic capacities. Based on the collection of arsenic-related genes, we identified thirteen distinct metabolic guilds, four of which combine the aio and ars operons. We found that the best studied phyla have very different combinations of capacities than less well-studied phyla, including phyla lacking isolated representatives. We identified a distinct arsenic gene signature in the microbiomes of humans exposed or likely exposed to drinking water contaminated by arsenic and that arsenic methylation is important in soil and in human microbiomes. Thus, the microbiomes of humans exposed to arsenic have the potential to exacerbate arsenic toxicity. Finally, we show that machine learning can predict bacterial arsenic metabolism capacities based on their taxonomy and the environment from which they were sampled

    A multivariate analysis of the relationship between response and survival among patients with higher-risk myelodysplastic syndromes treated within azacitidine or conventional care regimens in the randomized AZA-001 trial.

    Get PDF
    The phase III AZA-001 study established that azacitidine significantly improves overall survival compared with conventional care regimens (hazard ratio 0.58 [95% confidence interval 0.43ā€“0.77], P<0.001). This analysis was conducted to investigate the relationship between treatment response and overall survival. AZA-001 data were analyzed in a multivariate Cox regression analysis with response as a time-varying covariate. Response categories were ā€œOverall Responseā€ (defined as complete remission, partial remission, or any hematologic improvement) and ā€œStable Diseaseā€ (no complete or partial remission, hematologic improvement, or progression) or ā€œOtherā€ (e.g. disease progression). Achieving an Overall Response with azacitidine reduced risk of death by 95% compared with achieving an Overall Response with the conventional care regimens (hazard ratio 0.05 [95%CI: 0.01ā€“0.43], P=0.006). Sensitivity analyses indicated that significantly improved overall survival remained manifest for patients with a hematologic improvement who had never achieved complete or partial remission (hazard ratio 0.19 [95%CI: 0.08ā€“0.46], P<0.001). Stable Disease in both azacitidine-treated and conventional care-treated patients was also associated with a significantly reduced risk of death (hazard ratio 0.09, [95%CI: 0.06ā€“0.15]; P<0.001). These results demonstrate azacitidine benefit on overall survival compared with conventional care regimens in patients with higher-risk myelodysplastic syndromes who achieve hematologic response but never attain complete or partial remission, in addition to the survival advantage conferred by achievement of complete or partial remission. This study was registered with clinicaltrials.gov (NCT00071799)

    Effect of nickel on the microstructure and mechanical property of die-cast Alā€“Mgā€“Siā€“Mn alloy

    Get PDF
    The effect of nickel on the microstructure and mechanical properties of a die-cast Alā€“Mgā€“Siā€“Mn alloy has been investigated. The results show that the presence of Ni in the alloy promotes the formation of Ni-rich intermetallics. These occur consistently during solidification in the die-cast Alā€“Mgā€“Siā€“Mn alloy across different levels of Ni content. The Ni-rich intermetallics exhibit dendritic morphology during the primary solidification and lamellar morphology during the eutectic solidification stage. Ni was found to be always associated with iron forming AlFeMnSiNi intermetallics, and no Al3Ni intermetallic was observed when Ni concentrations were up to 2.06 wt% in the alloy. Although with different morphologies, the Ni-rich intermetallics were identified as the same AlFeMnSiNi phase bearing a typical composition of Al[100ā€“140](Fe,Mn)[2ā€“7]SiNi[4ā€“9]. With increasing Ni content, the spacing of the Ī±-Alā€“Mg2Si eutectic phase was enlarged in the Alā€“Mgā€“Siā€“Mn alloy. The addition of Ni to the alloy resulted in a slight increase in the yield strength, but a significant decrease in the elongation. The ultimate tensile strength (UTS) increased slightly from 300 to 320 MPa when a small amount (e.g. 0.16 wt%) of Ni was added to the alloy, but further increase of the Ni content resulted in a decrease of the UTS.The Engineering and Physical Sciences Research Council (EPSRC), Technology Strategy Board (TSB) and Jaguar Land Rover (JLR) in the United Kingdom

    A new family of periplasmic-binding proteins that sense arsenic oxyanions

    Get PDF
    Arsenic contamination of drinking water affects more than 140 million people worldwide. While toxic to humans, inorganic forms of arsenic (arsenite and arsenate), can be used as energy sources for microbial respiration. AioX and its orthologues (ArxX and ArrX) represent the first members of a new sub-family of periplasmic-binding proteins that serve as the first component of a signal transduction system, that's role is to positively regulate expression of arsenic metabolism enzymes. As determined by X-ray crystallography for AioX, arsenite binding only requires subtle conformational changes in protein structure, providing insights into protein-ligand interactions. The binding pocket of all orthologues is conserved but this alone is not sufficient for oxyanion selectivity, with proteins selectively binding either arsenite or arsenate. Phylogenetic evidence, clearly demonstrates that the regulatory proteins evolved together early in prokaryotic evolution and had a separate origin from the metabolic enzymes whose expression they regulate
    • ā€¦
    corecore