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Large-scale network analysis captures biological
features of bacterial plasmids
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Many bacteria can exchange genetic material through horizontal gene transfer (HGT)

mediated by plasmids and plasmid-borne transposable elements. Here, we study the popu-

lation structure and dynamics of over 10,000 bacterial plasmids, by quantifying their genetic

similarities and reconstructing a network based on their shared k-mer content. We use a

community detection algorithm to assign plasmids into cliques, which correlate with plasmid

gene content, bacterial host range, GC content, and existing classifications based on replicon

and mobility (MOB) types. Further analysis of plasmid population structure allows us to

uncover candidates for yet undescribed replicon genes, and to identify transposable elements

as the main drivers of HGT at broad phylogenetic scales. Our work illustrates the potential of

network-based analyses of the bacterial ‘mobilome’ and opens up the prospect of a natural,

exhaustive classification framework for bacterial plasmids.
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P lasmids are extra-chromosomal DNA molecules found
across all three Domains of Life. In bacteria, they are
considered one of the main mediators of horizontal gene

transfer (HGT) through the processes of conjugation and trans-
formation1–3. Plasmids generally harbour non-essential genes
that can modulate the fitness of their bacterial host. Some pro-
minent examples include toxin–antitoxin systems, virulence fac-
tors, metabolic pathways, antibiotic biosynthesis, metal resistance
and antimicrobial resistance (AMR) genes. These accessory genes
can be located on transposable elements involved in lateral gene
transfer across genomes and can thus lead to a highly mosaic
structure of plasmid genomes4. The mix of vertical and horizontal
inheritance of plasmids, together with exchanges of plasmid-
borne genes, generates complex dynamics that are difficult to
capture with classical population genetics tools and make it
challenging to classify plasmids within a coherent universal
framework.

Currently, there are two well-established plasmid classification
schemes that attempt to bin plasmids according to their propa-
gation mechanisms, while indirectly capturing some features of
the plasmid backbone. The first scheme is based on replicon
types5 and the second on mobility (MOB) groups6. Replicon-
based typing relies on relatively conserved genes of the replicon
region, which encode the plasmid replication and partitioning
machinery5. Plasmids with matching replication or partitioning
systems cannot stably coexist within the same cell. Conversely,
MOB typing is used to classify self-transmissible and mobilizable
plasmids into six MOB types6. The MOB-typing scheme relies on
the conserved N-terminal sequence of the relaxase, a site-specific
DNA endonuclease that binds to the origin of transfer cleaving at
the nic site and is essential for plasmid conjugation.

Despite being widely used and informative, these typing
schemes only work within a limited taxonomic range7–9. Replicon
typing is dependent on the availability of prior experimental
evidence and remains restricted to culturable bacteria from the
family Enterobacteriaceae and several well-studied genera of
Gram-positive bacteria1,10–12. Furthermore, this approach can
lead to ambiguous classification, even for experimentally vali-
dated replicons, as recently demonstrated by the discovery of
compatible plasmids assigned to the same replicon type, which
led to the further subdivision of the IncK type into IncK1 and
IncK213, and IncA/C type into IncA and IncC14. In addition,
plasmids can carry genes from more than one replication
machinery, leading to assignment to multiple replicon types,
further reducing interpretability7,8. MOB-typing schemes gen-
erate fewer multiple assignments and can cover a potentially
wider taxonomic range; however, they are not applicable to the
classification of non-mobilizable plasmids. These two typing
schemes have inspired several in silico classification tools, such as
PlasmidFinder12, the plasmid MultiLocus Sequence Typing
database and MOB suite15. However, all of these tools intrinsi-
cally rely on the completeness of their reference sequence data-
bases, which typically lack representatives from understudied
and/or unculturable bacterial hosts.

As bacterial plasmids undergo extensive recombination and
HGT, their evolutionary history is not well captured by phylo-
genetic trees, which are designed for the analysis of point
mutations in sequence alignments16,17. Network models offer an
attractive alternative given they can incorporate both horizontal
and vertical inheritance18,19, and can deal with point mutations as
well as structural variants. Networks have gained much attention
in the past decade as an alternative method for studying pro-
karyotic evolution, including plasmids3,8,18–20. Plasmid gene-
sharing networks have proven a useful means to track AMR and
virulence dissemination, yielding deeper insights into HGT
events17,21,22. However, the main drawback of previous work

relying on plasmid sequence alignments is the exclusion of
important non-coding elements, such as non-coding RNAs,
promoter regions, CRISPRs (clustered regularly interspaced short
palindromic repeats), stretches of homologous sequences, or
putative, disrupted and currently unannotated genes. A more
comprehensive approach could consider a plasmid network based
on estimates of alignment-free sequence similarity23. Alignment-
free genetic distance methods are becoming established tools for
the analysis of large genomic datasets, and their usefulness has
been validated in both prokaryotes and eukaryotes19,23–26. A
recently published Plasmid ATLAS tool by Jesus et al.27 provides
an illustration of such an approach, with a network of plasmids
constructed based on pairwise genetic distances estimated using
alignment-free k-mer matching methods implemented in Mash28.

In this work, we quantify the genetic similarity between more
than 10,000 bacterial plasmids available on NCBI’s RefSeq data-
base and construct a network that reflects their relatedness based
on shared k-mer content. Applying a community detection
algorithm allows us to cluster plasmids with high genetic simi-
larity into cliques (complete subgraphs) revealing a strong
underlying population structure. We find cliques to be highly
correlated with the gene content of the plasmid backbone, bac-
terial host and GC (guanine-cytosine) content, as well as replicon
and MOB types. Uncovering the structure of the full plasmid
population further allows the discovery of candidates for yet-
undescribed replicon genes and provides insight into broad-scale
plasmid dynamics. Taken together, our results illustrate the
potential of network-based analyses of plasmid sequences and
opens up the prospect of a natural, exhaustive classification fra-
mework for bacterial plasmids.

Results
A dataset of complete bacterial plasmids. A dataset of complete
bacterial plasmids was assembled comprising 10,696 sequences
found in bacteria from 22 phyla and over 400 genera (Supple-
mentary Data 1, Fig. 1a and Supplementary Fig. 1). The com-
position of plasmid hosts reflects current research interests, with
the Proteobacteria and Firmicutes phyla together representing
over 84% of plasmid sequences. The dataset includes plasmids
from a diversity of bacterial hosts, with 66 plasmids from
unknown bacterial families, 14 from uncultured bacteria and
37 samples from candidatus species (Supplementary Data 1). In
total, 510,463 different coding sequences (CDSs) were identified
in the plasmid dataset. In all, 66.01% of the CDSs were predicted
to encode a hypothetical protein, 27.9% had a known product
with Gene Ontology (GO) biological process annotation, with the
remaining 6.09% encoding a known protein product with
unknown biological function (Fig. 1b). There are 3,328,916 bac-
terial genes available in the RefSeq database (NCBI Gene Statistics
accessed on 19 June 2019), meaning that roughly 1 in 20 of the
currently known bacterial genes are plasmid borne. The GO
biological processes associated with plasmid CDSs are diverse.
After accounting for multiple occurrences of annotated CDSs in
the dataset, the dominant associated GO terms relate to catabolic
and biosynthetic processes (20.64% relative to total number of
annotated CDSs), transposon mobility (17.09%) and positive and
negative regulation of transcription (7.70%). Replicon-based
typing classified 27.66% of the plasmids into 163 different repli-
con types (Fig. 1c and Supplementary Fig. 2). However, 31.67% of
these classified plasmids were assigned to multiple replicon types.
MOB typing was more comprehensive, successfully classifying
32.63% of the plasmids into six MOB types, of which 9.48% were
assigned to multiple types (Fig. 1c). Unsurprisingly, classification
by these two methods performed best for well-studied plasmids of
the phyla Proteobacteria and Firmicutes.
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Uncovering the population structure of plasmids. We con-
structed a network based on the plasmid pairwise sequence
similarities. This represents a weighted, undirected network with
plasmids (vertices) connected by edges indicating similarity
(Supplementary Fig. 3). Similarity was scored using the exact
Jaccard index (JI), defined as the size of the intersection divided
by the size of the union of two sets of k-mers. Plasmid pairs that
shared <100 k-mers were considered to have a JI equal to zero.
This cut-off value was implemented since the majority of CDSs
found on plasmids have lengths >100 bp, thus only a fraction of
the functional genome is common between plasmids with low

shared k-mer count (Supplementary Figs. 4 and 5). The majority
of plasmid pairs shared little to no similarity (Fig. 1d). In all,
6.14% (657) of the plasmids were singletons, while 3.31% (354)
were connected to only one other plasmid, illustrating the high
levels of diversity across bacterial plasmid genomes. It follows
that plasmids with more k-mers in common are more likely to
share the same functional genetic elements and hence participate
in similar biological processes falling within the same host niche
(Supplementary Fig. 5). Such plasmids are presumed to form
cliques within the network with higher internal JI score. The
objective is then to identify cliques that contain plasmids with
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Fig. 1 Summary of the dataset of complete bacterial plasmids. a The distribution of host phylum represented in the plasmid dataset. b Functional
annotation of plasmid-borne genes. The pie chart shows the proportion of unique CDSs with hypothetical function as predicted by Prokka48, and CDSs
(genes) with known/unknown biological function based on GO annotation. The bar chart provides the most common biological functions associated with
plasmid-borne genes also considering the respective frequency of these genes on plasmid genomes. c The percentage of plasmids covered by the three
classification methods: replicon and MOB-typing schemes, and clique assignment. d The distribution of pairwise plasmid similarities (Jaccard index).
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markedly higher similarity between themselves, relative to their
immediate network neighbourhood.

Listing all cliques of our large plasmid network and assessing
their internal similarity is computationally intractable with
current tools29. A solution for a single clique can be quickly
verified, but the time required to process all possible cliques scales
rapidly as the size of the network increases. As an alternative
solution, a stochastic community detection algorithm OSLOM
(Ordered Statistics Local Optimization Method) was implemen-
ted30. OSLOM detects communities (i.e. densely interconnected
subgraphs) with statistical significance, meaning that they have a
low probability of being encountered by chance in a random
network with similar features to the plasmid network. OSLOM is
well suited for this task since it can be used to analyse undirected
networks with overlapping communities. In addition, OSLOM
shows similar performance to other widely used methods such as
Infomap or Louvain30,31, which, unlike OSLOM, were unable to
analyse this dataset due to computational limitations. To validate
the results from the stochastic clique assignment, all communities
of size three or more detected by OSLOM were assessed for their
completeness (i.e. whether they form cliques) against the original
plasmid network (Supplementary Fig. 3).

Despite the notable dissimilarity among plasmids, the original
network was too dense (network density= 0.0438) to yield a
consistent performance for every OSLOM run (Fig. 2 and
Supplementary Figs. 3 and 6). Furthermore, a large proportion
of communities detected did not form cliques and would have to
be disregarded (Fig. 2a). A JI threshold was introduced to increase
the sparsity of the network and to upweight more similar
plasmids, thus optimizing the performance of OSLOM. A range of
thresholds were assessed based on the following criteria: (i) the
clique to community ratio (Fig. 2a), (ii) the proportion of plasmids
assigned to cliques (Fig. 2b), (iii) the congruence with replicon-
based typing (Fig. 2c) and (iv) the consistency of OSLOM
performance (Fig. 2 and Supplementary Fig. 6). The optimum
threshold was consistently obtained at a JI of 0.3. The resulting
sparse network is shown in Fig. 3 (network density= 0.00128).

The OSLOM-guided clique detection algorithm offers flex-
ibility and identifies cliques of plasmids with a wide range of
internal similarity scores (Supplementary Fig. 7). We assessed the
importance of considering pairwise JI distances as a continuous
variable by reanalysing the dataset with the Bron–Kerbosch Max-
clique algorithm32, implemented in the graph-tool Python
library33. The Bron–Kerbosch algorithm is computationally
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highly effective, but the pairwise distances between plasmids are
treated as binary values defined by the given threshold. Applied
across a range of JI thresholds, the Max-clique approach
systematically identifies a very large number of cliques (Supple-
mentary Fig. 8A), assigns a large proportion of plasmids to
multiple cliques (Supplementary Fig. 8B) and leads to a low
correlation between resulting cliques and plasmid replicon types
(Supplementary Fig. 8C).

Plasmid cliques agree with current typing schemes. Analysis of
the sparse network with OSLOM successfully assigned 50.21%
(5371) of the plasmids into 561 cliques of size three or more
(Figs. 1c and 3 and Supplementary Fig. 14). Only 1.64% (88) of
these plasmids were assigned to multiple cliques, and these were
found in the densest regions of the network and at the interfaces
between cliques indicating the presence of ‘chimeric plasmids’
(i.e. hybrid plasmids generated through merging of two different
plasmids), large-scale transposition or recombination events, or
extensive repeated transposition/recombination (Figs. 1c and 3).
In addition, this approach covered 564 plasmids from phyla other
than the Proteobacteria and Firmicutes, namely from Spir-
ochaetes, Chlamydiae, Actinobacteria, Tenericutes, Bacteroidetes,
Cyanobacteria and Fusobacteria. Interestingly, after applying the
0.3 JI threshold, 38.01% (4066/10696) of plasmids that could not
be assigned to cliques of size three or more were separated from

the network as singletons, while 10.10% (1080) shared an edge
with a single plasmid. Therefore, only 1.67% (179) of plasmids
were effectively left unassigned. Nonetheless, due to the apparent
lack of shared genetic signal, plasmid singletons and pairs were
not considered in subsequent analyses. To assess the extent to
which ‘mobile elements’ shared between plasmids affect the
classification into cliques, we repeated the clique assignment
analyses after having removed all accessory CDSs (29,913) asso-
ciated with transposition, pathogenesis, or resistance (Supple-
mentary Fig. 9). Pruning these genes did not markedly affect the
assignment of plasmids into cliques, which gives support to the
genetic signal being driven by the genetic similarity of plasmid
backbones rather than shared mobile genetic elements.

Clique purity and normalized mutual information (NMI) were
used to assess the quality of clique-based classification (see
‘Methods’). These metrics were calculated for cliques comprising
plasmids with identified replicon type, plasmids carrying a single
identified replicon type, or plasmids with assigned MOB type.
Untyped plasmids were disregarded. The observed purity scores
were high (>85%), indicating the homogeneity of cliques for a
particular plasmid type (Supplementary Fig. 10). This was
particularly the case for MOB types (purity= 0.9887) and
plasmids assigned to a single replicon type (purity= 0.9522).
NMI provides an entropy-based measure of the similarity
between two classification systems where a score equal to one
indicates identical partitioning into classes, while zero means

Single-clique plasmids Multi-clique plasmids Unassigned plasmids

Fig. 3 Sparse network of plasmids assigned to cliques by OSLOM algorithm (network density= 0.00128). The network includes 5371 plasmids (nodes)
assigned into 561 cliques (complete subgraphs). The completeness of identified cliques was evaluated based on the original network (Supplementary
Fig. 3). 5008 unassigned plasmids, which formed disjoined singletons and pairs, were removed from the network. Coloured nodes indicate plasmids
assigned to a single clique.
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independent classification. NMI penalizes differences in the
number of assignment classes, which justifies the low score
observed when assessing clique-based versus MOB-based typing
(NMI= 0.5223). Nevertheless, high NMI scores were obtained
when considering a replicon-based classification scheme (NMI=
0.9044 all types, and NMI= 0.9336 for single replicon types). It
follows that plasmids with the same replicon type often fall
together within the same clique. This is also supported by the
high correlation between the clique membership size and the
number of plasmids assigned to the corresponding replicon class
(Supplementary Fig. 11, R2= 0.862 for plasmids assigned to a
single replicon types).

There are exceptions where plasmids from larger replicon
classes are further resolved into a few smaller evolutionary-related
cliques. One such example is provided by the 22 ‘broad-host-
range’ IncP plasmids, which have been split into three cliques (14,
118 and 332) (Supplementary Fig. 12, Supplementary Data 1).
While plasmids within these cliques share notably high JI
similarity, the similarities between cliques remain low. This is
especially true for clique 332 and 14, for which between-clique
similarity is zero. Interestingly, plasmids from clique 332 have
been exclusively associated with Gammaproteobacteria, while the
ones from cliques 118 and 14 are mostly found in hosts from
the Betaproteobacteria class. This arrangement of IncP into
multiple cliques with a more constrained host range is in line with
previous findings of weaker incompatibilities in IncP34 and the
existence of multiple genetically distinct IncP sub-lineages whose
backbone is coadapted to their host35. Another example of a
genetically heterogeneous replicon type is provided by IncY and
p0111 plasmids collected from Escherichia coli strains, which fall
into three cliques (119, 230 and 372) (Supplementary Fig. 13).
Clique 119 and 372 cluster IncY and p0111 plasmids, respectively,
with a single, possibly misplaced IncFIB plasmid. Conversely,
clique 230 comprises both IncY and p0111 plasmids, with a
remarkably related genetic backbone. The latter result raises
questions on the distinctiveness of IncY and p0111 plasmid types.

Candidate replicon genes recovered from untyped plasmids.
The majority of plasmids with unknown replicon types formed
small cliques (Supplementary Fig. 14). In fact, 81.02% of the
smallest cliques (carrying three to five plasmids) contain exclu-
sively untyped plasmids. Together with the aforementioned sin-
gletons and lone plasmid pairs, this trend highlights the many
understudied and underrepresented plasmids in sequence data-
bases. Accordingly, the next objective was to investigate the
genetic content of untyped cliques to determine candidate repli-
con genes and further traits of biological relevance.

In total, there are 388 cliques with no assigned replicon types.
As the cliques tend to be homogeneous for a replicon type, only
the core genes (i.e. genes occurring on all plasmids of a particular
clique) found on untyped cliques were considered. Core genes
were translated into protein sequences and screened against the
translated PlasmidFinder database using TBLASTN36. A range of
e values were assessed to determine the threshold maximizing the
discovery of replicon candidates while minimizing false positives
(Supplementary Fig. 15). The majority of plasmids were assigned
to one replicon type with some plasmids having hits to a
maximum of three to four different types. Accordingly, the
optimal e value threshold was selected when the total number of
core gene hits started to diverge from the number of untyped
cliques covered. A conservative e value threshold of 0.001 was
chosen, which resulted in the identification of 105 candidate
genes from 106 plasmid cliques. The accession numbers and
positions of candidate genes are listed in the Supplementary
Data 1 (Candidate_replicon_gene column) for all carrier plasmids.

To verify the plausibility of the identified gene candidates,
HMMER (version 3.2.1) was used to scan amino acid sequences
for known protein domain families found in the Pfam database
(version 32.0)37. One hundred and sixty-six families, with e values
lower than 0.001, were identified on 97 protein sequences and
were most commonly associated with replication initiation
(Supplementary Fig. 16). Moreover, the majority of functions
associated with the discovered protein families relate to plasmid
replicon proteins. For example, domains with helix–turn–helix
motifs are important for DNA binding of replicon proteins and
allow some proteins to regulate their own transcription38. Other
examples of transcriptional regulators also exist in plasmid
replicon regions, while DNA primase activity has been found on
the RepB replicon protein38. Interestingly, replicon proteins
involved in rolling-circle replication (a mechanism of plasmid
replication) share some of their motifs with proteins involved in
plasmid transfer and mobilization38. This could explain why
some of the discovered domain families are linked to plasmid
mobilization. On the whole, the candidate replicon genes are
highly specific to a particular clique of plasmids and should assist
description of new incompatibility types.

Cliques exhibit common GC content and bacterial hosts. The
unprocessed plasmid network exhibited a pronounced structure
in terms of the plasmid nucleotide composition, measured by GC
content (Supplementary Fig. 3). This trend was also reflected in
the clique composition (Supplementary Fig. 17A). Within a cli-
que, the standard deviation of GC content rarely exceeds 0.02 and
is weakly correlated with the clique size (R2= 0.0155) (Supple-
mentary Fig. 17B). Moreover, a significant difference in GC
content is often found between cliques. Analysis of variance,
followed by a Tukey’s test, found that 85.3% of the time the GC
content between two cliques differs significantly (adjusted p value
< 0.001). In contrast, the sequence lengths of plasmids within a
clique are more variable, but are also not strongly correlated with
clique size (R2= 0.029) (Supplementary Fig. 17C, D). Similarly, a
Tukey’s test showed that a significant difference in plasmid length
between cliques is observed <34% of the time (adjusted p value <
0.001).

Plasmid GC content has been shown to be strongly correlated
to the base composition of the bacterial host’s chromosome39.
Indeed, the cliques showed a very high homogeneity (purity)
relative to their hosts (Supplementary Fig. 18), a trend that has
been identified in other plasmid network reconstruction efforts21.
At higher taxonomic levels, cliques have near-perfect purity
scores (>0.99). The purity score slightly decreases at the level of
the plasmid host family, reaching a value of 0.807 at the species
level. Therefore, plasmids with high genetic similarity rarely
transcend the level of the bacterial genus, which suggests a limited
host range for the vast majority of plasmids. However, these
results need to be carefully considered due to inherent biases in
the dataset, especially in terms of the predominance of well-
studied taxa. Overall, the plasmid cliques show a strong intrinsic
propensity towards confined GC content and are found in a
limited range of bacterial hosts.

Plasmids within cliques have uniform gene content. The gene
content of cliques was assessed for all genes occurring five or
more times in the dataset. This threshold was chosen to facilitate
computation, and to adequately characterize more prevalent
genes. In total, 15,851 out of 35,883 (44.17%) of the assessed
genes were ‘core’ genes, meaning they had a within-clique fre-
quency equal to one, suggesting an overall uniformity of gene
content in cliques (Supplementary Fig. 19). Furthermore, 6577
(18.33%) of the genes were ‘private’. Private genes are those found
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in only one clique, with a frequency of one, and their relatively
high abundance in the dataset suggests the uniqueness of some
cliques with respect to their gene content. However, there is an
inherent bias. Plasmids within larger cliques tend to be more
dissimilar and share proportionally fewer genes (Supplementary
Fig. 20). This pattern can, in part, be explained by the broader
gene content of large cliques and the high sequence similarity
required for same-gene clustering (95%) within the default
implementation of the Prokka–Roary annotation pipeline. In all,
31.94% of cliques containing five or more plasmids were found to
have 1 to 10 core genes. However, cliques exhibited a wide range
in the number of core genes with 7.74% of cliques carrying over
100 shared genes. Interestingly, 13.55% (42) of cliques had no
core genes that could also be an artefact of the gene annotation
pipeline sensitivity or poor-quality assemblies. For instance,
plasmids from 19 cliques carried no recognized genes from the
pool of 35,883 assessed genes. Functionally, core genes were
found to be more often associated with various metabolic pro-
cesses, transcription regulation and transmembrane transport

(Supplementary Fig. 21) when compared to the overall distribu-
tion of GO terms, shown in Fig. 1b. Similarly, fewer core genes
were involved in transposon movement, pathogenesis and
resistance.

Inferring HGT through clique interactions. Gene content was
also considered in the context of clique structure and inter-
connectedness. To do so, the original network of plasmids
(Supplementary Fig. 3) was rearranged such that: (i) plasmids
assigned to the same clique were clustered under a single vertex;
(ii) plasmids assigned to multiple cliques were left as solitary
vertices anchoring the cliques; (iii) unassigned plasmids were
removed. The resulting network is shown in Fig. 4. As highlighted
earlier, large cliques generally show lower internal similarity
compared to the smaller ones. It is important to note that an
arbitrary JI threshold of 0.01 was introduced in Fig. 4 to assist
visual interpretation, but the unfiltered version of the network is
provided in Supplementary Fig. 22.
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Fig. 4 The network of cliques. Cliques, represented as vertices, are connected with an edge if the average Jaccard index (JI) between plasmids of two
cliques is >0.01. The colour of the edges indicates the average JI, while the width is proportional to the number of connections between a pair of cliques.
The shape and colour of the cliques indicates the phylum of the predominant bacterial host. The size and the transparency are proportional to the clique
size and the internal JI, respectively. The cliques form multiple clusters, which have been named based on the genus of the bacterial host characteristic for
a particular cluster. There are two exceptions—the Proteobacteria and the Dairy (Lactic) cluster whose respective genera distributions have been provided.
The most common GO biological functions of the genes found on plasmids of Proteobacteria, Staphylococcus, Enterococcus and Dairy clusters were further
assessed. During the assessment, the respective frequencies of the genes were considered. In case of Proteobacteria, the bar chart distribution of the
biological functions is provided. The shared and core gene content of Staphylococcus, Enterococcus and Dairy clusters is presented in the Venn diagram with
the numbers in the diagram indicating the number of core and shared genes.
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The clustering of cliques in Fig. 4 shows high concordance with
the phylogenetic hierarchy of the bacterial hosts. On a global
scale, there are four large interconnected clusters (three
corresponding to cliques from the phylum Firmicutes and one
from the Proteobacteria), eight disjointed clusters and a dozen
singled-out triplets and pairs. The clique clusters mostly contain
plasmids from a specific genus with some minor deviations—
hence the cluster naming. The only two exceptions are the large
and diverse Proteobacteria cluster, which harbours plasmids
mainly from the genera Escherichia, Klebsiella and Salmonella and
the Dairy bacteria. The majority of genes identified in these four
large clusters were those functionally involved in transposition.
Specifically, 26.4% of the genes in the Proteobacteria cluster were
transposition related. In addition, 9.66% of the genes in the
Proteobacteria were involved in some form of AMR or metal
resistance, and 7.38% in pathogenesis, which may reflect the high
number of pathogens found in this phylum40.

The core and shared gene content of the three Firmicutes
clusters (Staphylococcus, Enterococcus and Dairy) was also
assessed (Fig. 4, Venn diagram). Gene sharing was most
common between the clusters associated with Staphylococcus
and Enterococcus potentially indicating a high frequency of HGT
between them, and the least between the Staphylococcus and
Dairy bacteria cluster. Analysing the content of these shared
genes provides insight into both plasmid function and dynamics,
such as the identification of HGT events. For example, the same
lactose metabolism genes were found in both Staphylococcus
and Dairy bacteria plasmids. Also, the trpF gene, involved in
tryptophan biosynthesis and previously associated with the
Tn3000 and Tn125 transposable elements41,42, was found on
plasmids in all three clusters. In contrast to these, the more
disjoint clusters of plasmid cliques observed for other genera
may be driven by the species’ ecology and life history, which may
lead to limited opportunities for contact between lineages. Such
an explanation seems plausible for strict pathogens with
restricted host range, such as Xanthomonas or Borrellelia.
Conversely, for lineages with a wider environmental niche like
Bacillus, the lower connectivity between cliques may be due to
intrinsic genetic factors leading to lower between-plasmid
recombination and/or transposition rates.

Discussion
Using alignment-free sequence similarity comparison and
subsequent network analysis, we uncovered strong population
structure in bacterial plasmids. This approach, applied to a
comprehensive set of complete bacterial plasmids, yielded a
network in which over half of the plasmids were classified into
cliques. There is a significant improvement in coverage over
existing plasmid typing methods. Additionally, the cliques
capture biologically meaningful information. For example,
plasmids assigned to the same clique show good accord with
replicon and MOB-typing schemes, high homogeneity in terms
of their respective bacterial hosts and similar GC and gene
content.

A network-based representation of plasmid sequence simila-
rities condenses both vertical and horizontal evolutionary his-
tories in a similar fashion to gene-sharing networks17,21,22,
making it ideally suited for the identification of mobile genetic
elements. The cliques we recovered delineate clusters of plasmids
with shared evolutionary history. This in turn allows for inference
on the nature of HGT events and plasmid function. Moreover, the
approach facilitates identification of new replicon gene candi-
dates, as well as detailed investigation of the distribution of
plasmid-borne genetic determinants of incompatibility, MOB,
AMR, virulence and transposon carriage. Such meta-information

could be incorporated within the network framework owing to a
plethora of well-maintained bioinformatics tools, ever-growing
genetic databases and GO efforts to systematize gene annotation.

The strong, host-constrained population structure we docu-
ment for the majority of bacterial plasmids points to transposable
genetic elements as the main drivers of HGT in bacteria. In such a
case, plasmids primarily act as vehicles for the transfer of genetic
material between different bacterial taxa and are eventually lost,
while transposons are more successful at maintaining themselves
by relocating onto a host-compatible plasmid or the chromo-
some. Such dynamics could explain the relative uniformity of
plasmid cliques in their host range, gene and GC% content, as
well as the excess of transposable elements shared between cliques
of different taxa. This likely extends to the so-called ‘broad-host-
range’ plasmids such as IncP, whose representatives in our dataset
fell into three genetically distinct cliques associated to different
host species.

JI (i.e. the fraction of shared k-mers) was chosen as a measure
of sequence similarity between pairs of plasmids due to it being a
straightforward metric, which considers genome sequences as a
whole, embodying both point mutations and large-scale genome
rearrangements. As a result, it is not biased by the ability to
annotate genes, open reading frames, or other genetic elements.
In addition, it is not prone to errors and biases intrinsically
associated with alignment-based methods, such as: a priori
assumptions about the sequence evolution, higher inaccuracy
when comparing more dissimilar sequences, or suboptimal
alignments23. JI can in principle provide fine-scale resolution
when comparing small genomes, a characteristic common to the
majority of plasmids. Conversely, JI is sensitive to varying gen-
ome sizes28 and plasmids are known to differ more than 1000-
fold in sequence length7,43. While differences in plasmid genome
size can lead to a drop in JI score even when high proportions of
k-mers are shared, sequence length variation did not seem to
impact our structuring into cliques, which comprise plasmids of
different lengths (Supplementary Fig. 17C, D).

Assessing the statistical significance of all cliques is computa-
tionally intractable given the size of the network. Hence, OSLOM
community detection algorithm was employed to uncover cliques
of plasmids with high genetic similarity. In an effort to optimize
the performance of the OSLOM algorithm and maximize the
number of biologically meaningful cliques, all edges with a JI value
<0.3 were removed from the network prior to the analysis. This
threshold was chosen to maximize compliance with replicon-
based typing as well as several other criteria. While our classifi-
cation of plasmids into cliques is fairly robust to this exact JI
threshold, we appreciate that a 0.3 JI threshold remains somewhat
arbitrary. This being said, any taxonomy based on sequence
similarity will be partly subjective. As such, our 0.3 JI threshold is
comparable in its subjectivity to the 95% average nucleotide
identity, which was set over a decade ago and is routinely used to
define species boundaries in prokaryotes44. However, depending
on the question pursued, enforcing a strict JI threshold may not be
necessary, and it could be left to plasmid sequences in the network
to solely inform the cut-offs. Some boundaries are likely to be
blurrier than others, largely reflecting the extensive variation of
genetic inheritance in different bacterial hosts.

Our results suggest it should be possible to devise a ‘natural’,
global sequence-based classification scheme for bacterial plas-
mids. This being said, our findings do not diminish the relevance
of replicon and MOB-typing schemes, rather they build upon
these prior classification schemes and may extend them to plas-
mids from understudied and uncultured bacteria. Beyond just
plasmid classification, our network-based approach also has the
potential to infer key features of plasmid groupings. Indeed,
plasmid clique assignment can be completely automated and
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inspection of any particular area of the network facilitates bio-
logical inference about plasmid dynamics and their biological
features within various groups of bacterial hosts.

Methods
Assembling a dataset of complete bacterial plasmids. A dataset of complete
plasmids was downloaded from NCBI’s RefSeq release repository45 on 26 Sep-
tember 2018. The metadata accompanying each plasmid sequence was parsed from
the associated GenBank files. The resulting dataset was then systematically curated
to include only those plasmids sequenced from a bacterial host and with a sequence
description, which implies a complete plasmid sequence (regular expression term
used: ‘plasmid.*complete sequence’). This is a simpler, but similar approach to a
previously reported curation effort by Orlek et al.9. Nevertheless, a large portion of
unsuitable entries, such as gene sequences, partial plasmid genomes, whole gen-
omes, non-bacterial sequences and other poorly annotated sequences, were
removed. The final dataset included 10,696 complete bacterial plasmids as listed
with full metadata in Supplementary Data 1.

Information about the taxonomic hierarchy of plasmid bacterial hosts was
obtained with the ncbi_taxonomy module from the ETE 3 Python toolkit46. To
determine the replicon and MOB types of plasmids included in the dataset, we used
the PlasmidFinder replicon database (version: 2018-09-04)12 and the MOBtyping
software47. The PlasmidFinder database was screened using nucleotide BLAST36

with a minimum coverage and percentage identity of 95%. In cases where two or
more replicon hits were found at overlapping positions on a plasmid, the one with
the higher percentage identity was retained. For determining the plasmid MOB
type, MOBtyping software was used with the recommended settings of 14 PSI-
BLAST iterations.

Plasmid CDSs were annotated using Prokka48 (version 1.13.3) and Roary49

(version 3.12.0) pipelines run with default parameters. The identified CDSs were
further associated with GO terms50,51 to facilitate downstream gene content
analysis. Since Prokka uses a variety of databases to annotate identified CDSs,
different resources have been used to append the corresponding GO terms. For
example, GO terms for CDSs with a known protein product have been obtained
using Uniprot’s ‘Retrieve/ID Mapping’ tool52, while the GO terms for CDSs with
just the HAMAP family were obtained with the hamap2go mapping table53

(version date: 2019/05/04). CDSs annotated with the ISfinder database were given
GO terms GO:0070893 and GO:0004803 in order to associate them with
transposition. Similarly, CDS annotated with Aragorn, MinCED and BARRGD
were given GO:0006412, GO:0099048 and GO:0046677 terms, respectively.

Assessing similarity between pairs of plasmids. The exact JI was used as a
measure of similarity between all possible plasmid pairs. Each plasmid sequence
was converted to a set of 21 bp k-mers. The JI was then calculated as the fraction of
shared k-mers between two sets. JI thus takes a value between 0 and 1, where 1
indicates 100% k-mer similarity and 0 indicates no k-mers shared. This allows
balanced comparison of diverse plasmid genomes and universality. Also, JI does
not weight k-mers based on their abundance, like the popular D2* and D2

S sta-
tistics54, which would exacerbate the inherent sampling biases towards well-studied
species to the dataset. We applied Bindash55 to calculate the exact JI, which resulted
in the creation of a plasmid adjacency matrix, which was used to build the network.
All networks presented here have been explored and visualized using the Cytoscape
software56.

Implementing OSLOM community detection algorithm. OSLOM (version 2.5)
was applied to identify cliques (complete subgraphs) with high internal JI similarity
in the plasmid network30. OSLOM aims to identify highly cohesive clusters of
vertices (communities) that may or may not be cliques (complete subgraphs). The
statistical significance of a cluster is measured as the probability of finding the
cluster in a configuration model, which is designed to build random networks while
preserving the degrees (number of neighbours) of each vertex. The method locally
optimizes the statistical significance with respect to vertices directly neighbouring a
particular cluster. In brief, OSLOM starts by randomly choosing vertices from a
network that is regarded as clusters of size one. These small clusters alongside their
neighbouring vertices are assessed. Vertices are scored based on their connection
strength with a particular cluster and are either added or removed from the cluster.
The process continues until the entire network is covered. Due to the stochastic
nature of the algorithm, this network assessment goes through many iterations,
after which the frequently emerging significant clusters (i.e. communities) are kept.
The algorithm then proceeds to assess the clusters of the next hierarchical level;
vertices belonging to the significant clusters are condensed into super-vertices with
weighted edges connecting them. The process of cluster assessment is repeated at
higher hierarchical levels until no more significant clusters are recovered.

OSLOM was executed for an undirected and weighted network with the
following parameters:

oslom_undir -w -t 0.05 -r 50 -cp 0 -singlet -hr 0 -seed 1.
Clusters were considered significant if their p value was lower than 0.05 (-t
0.05). The number of iterations required before the recovery of significant
clusters was set to 50 during the search for the optimally sparse network (-r 50),
and 250 for the final network analysis after the introduction of the 0.3 JI threshold

(-r 250). After the iteration process, OSLOM considers merging similar
significant clusters if the significance of their union is high enough. This feature can
potentially yield less cliques and was suppressed with the coverage parameter set to
zero (-cp 0), thus forcing OSLOM to opt for the biggest and most significant
cluster from a set of similar clusters. In addition, OSLOM tries to place all vertices
of a network in clusters, which is also unfavourable for clique recovery and was
suppressed with option -singlet. Lastly, cliques can only be recovered at the
first hierarchical level. Therefore, the OSLOM analysis of the higher hierarchical
levels was disregarded (-hr 0).

As mentioned earlier, OSLOM is a non-deterministic algorithm and the initial
single-vertex clusters are chosen at random. While looking for the optimally sparse
network, five OSLOM runs were executed to assess every JI threshold and were
given seeds for a random number generator (-seed) of 1, 5, 42, 93 and 212. The
final network analysis was performed with a seed equal to 42, after which only
cliques were considered, with non-complete communities disregarded.

Scoring NMI and purity. The compliance of cliques with replicon and MOB-
typing schemes was assessed by measuring the NMI and purity between them.
NMI is a commonly used method to assess the performance of clustering algo-
rithms57. For the two clustering/classification schemes (C1 and C2) NMI is defined
as58:

NMI C1;C2ð Þ ¼ I C1;C2ð Þ
H C1ð ÞþH C2ð Þ½ �

2

: ð1Þ

In Eq. (1), the mutual information, also known as the information gain and
denoted as I(C1,C2), is an information theory concept that measures the reduction
of uncertainty around C1 given the knowledge about C2, and vice versa. It is
normalized by the averaged Shannon entropy (H) between C1 and C2. Shannon
entropy tends to be larger as the number of classes in C1 or C2 approach the size of
the dataset in question. Consequently, the NMI is sensitive to differences in the
number of classes between C1 and C2, and to extensively fragmented classifications.
The NMI equals one if the two classifications yield identical partitioning of the
dataset, whereas a value of zero indicates complete incoherence. The NMI was
measured using the R package NMI (version 2.0; https://CRAN.R-project.org/
package=NMI). During the assessment, plasmids that were not classified by
replication or MOB-typing schemes were disregarded.

Purity was used to estimate the homogeneity of cliques for replicon or MOB
types, and plasmid host taxa. For a set of cliques C, and a plasmid typing scheme T,
purity is defined as:

purity C;Tð Þ ¼ 1
N

X

ci2C
max
tj2T

ci \ tj

���
���; ð2Þ

where N is the total number of plasmids covered by a set of cliques, C= { c1, c2, …,
ci } is a set of cliques in which plasmids were placed, and T= { t1, t2, …, tj } are the
types associated with plasmids. Similar to NMI, the purity scores a value between 0
and 1, with high purity indicating high homogeneity of classes in the dataset for a
given set of plasmid types. The purity was only assessed for cliques that contain at
least one typed plasmid. Untyped plasmids found within the assessed cliques were
disregarded.

The full MOB, incompatibility types and clique assignments for each plasmid
are provided in Supplementary Data 1.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The sequences that make up the dataset analysed during the current study are available in
the NCBI’s RefSeq repository (ftp://ftp.ncbi.nlm.nih.gov/refseq/release/plasmid/). The
accession numbers of the sequences are listed in Supplementary Data 1. The source data
underlying the figures are provided as a Source Data file.

Code availability
All code used in this research is available at github (https://github.com/macman123/
plasmid_network_analysis).
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