93 research outputs found

    Binding and Uptake into Human Hepatocellular Carcinoma Cells of Peptide-Functionalized Gold Nanoparticles

    Get PDF
    One of the most daunting challenges of nanomedicine is the finding of appropriate targeting agents to deliver suitable payloads precisely to cells affected by malignancies. Even more complex is to achieve the ability to ensure the nanosystems enter those cells. Here we use 2 nm (metal core) gold nanoparticles to target human hepatocellular carcinoma (HepG2) cells stably transfected with the SERPINB3 (SB3) protein. The nanoparticles were coated with a 85:15 mixture of thiols featuring, respectively, a phosphoryl choline, to ensure water solubility and biocompatibility, and a 28-mer peptide corresponding to the amino acid sequence 21-47 of the hepatitis B virus-PreS1 protein (PreS1(21-47)). Conjugation of the peptide was performed via the maleimide-thiol reaction in methanol allowing the use of a limited amount of the targeting molecule. This is an efficient procedure also in the perspective of selecting libraries of new targeting agents. The rationale behind the selection of the peptide is that SB3, which is undetectable in normal hepatocytes, is over-expressed in hepatocellular carcinoma and in hepatoblastoma and has been proposed as a target of the hepatitis B virus (HBV). For the latter the key recognition element is the PreS1(21-47) peptide, which is a fragment of one of the proteins composing the viral envelope. The ability of the conjugated nanoparticles to bind the target protein SB3, expressed in liver cancer cells, was investigated by surface plasmon resonance analysis and in vitro via cellular uptake analysis followed by atomic absorption analysis of digested samples. The results showed that the PreS1(21-47) peptide is a suitable targeting agent for cells overexpressing the SB3 protein. Even more important is the evidence that the gold nanoparticles are internalized by the cells. The comparison between the surface plasmon resonance analysis and the cellular uptake studies suggests the presentation of the protein on cell surface is critical for efficient recognition

    Growth Performance of Mytilus galloprovincialis Lamarck, 1819 under an Innovative Integrated Multi-Trophic Aquaculture System (IMTA) in the Mar Grande of Taranto (Mediterranean Sea, Italy)

    Get PDF
    The cultivation of the Mediterranean mussel, Mytilus galloprovincialis Lamarck, 1819, has been tested in an innovative Integrated Multitrophic Aquaculture system (IMTA) in the Mar Grande of Taranto, as part of the EU-funded Remedialife project. This farming method could solve several problems including the low growth rate in mesotrophic environments while reducing the environmental impact of fish mariculture. Three productive cycles have been carried out. The first (2018–2019, traditional experiment) was conducted in three long lines around six cages of the fish farm in order to evaluate total mussel production under the innovative IMTA system and quality for human consumption by analyzing the concentration of culturable heterotrophic bacteria, total and fecal coliforms, Escherichia coli and Salmonella spp. in mussel tissues. In addition, 17 polycyclic aromatic hydrocarbons (PAHs), including 16 EPA priority compounds and seven polychlorinated biphenyls (PCBs), which are indicators of PCB contamination in the environment, were analyzed using gas chromatography in conjunction with a mass spectrometer. The second cycle (2020–2021, horizontal distance experiment) aimed to test the influence of fish cages on mussel growth by placing mussels near and far from the fish cages. The third cycle (2021–2022, vertical distance experiment) aimed to overcome the phenomenon of “heat waves” that can occur in the Mar Grande of Taranto during summer by testing the growth performance of mussels at two different depths (1 and 12 m). The following parameters were measured: Shell Length, L (mm); Shell Dry Weight, SDW (g); Flesh Dry Weight, FDW (g); Condition Index, IC = FDW/SDW. The results showed that the best growth performance was obtained near the fish cages and at a depth of 12 m. Moreover, the indicators of microbial contamination and concentrations of chemical compounds analyzed in mussel tissues cultured under the innovative IMTA system were in compliance with the reference values of European regulations

    MiR-122 Targets SerpinB3 and Is Involved in Sorafenib Resistance in Hepatocellular Carcinoma

    Get PDF
    The only first-line treatment approved for advanced hepatocellular carcinoma (HCC) is sorafenib. Since many patients experience drug resistance, the discovery of more effective therapeutic strategies represents an unmet clinical need. MicroRNA (MiR)-122 is downregulated in most HCCs, while oncogenic SerpinB3 is upregulated. Here, we assessed the relationship between miR-122 and SerpinB3 and their influence on cell phenotype and sorafenib resistance in HCC. A bioinformatics analysis identified SerpinB3 among hypothetical miR-122 targets. In SerpinB3-overexpressing HepG2 cells, miR-122 transfection decreased SerpinB3 mRNA and protein levels, whereas miR-122 inhibition increased SerpinB3 expression. Luciferase assay demonstrated the interaction between miR-122 and SerpinB3 mRNA. In an HCC rat model, high miR-122 levels were associated with negative SerpinB3 expression, while low miR-122 levels correlated with SerpinB3 positivity. A negative correlation between miR-122 and SerpinB3 or stem cell markers was found in HCC patients. Anti-miR-122 transfection increased cell viability in sorafenib-treated Huh-7 cells, while miR-122 overexpression increased sorafenib sensitivity in treated cells, but not in those overexpressing SerpinB3. In conclusion, we demonstrated that miR-122 targets SerpinB3, and its low levels are associated with SerpinB3 positivity and a stem-like phenotype in HCC. MiR-122 replacement therapy in combination with sorafenib deserves attention as a possible therapeutic strategy in SerpinB3-negative HCCs

    SerpinB3 promotes pro-fibrogenic responses in activated hepatic stellate cells

    Get PDF
    SerpinB3 is a hypoxia- and hypoxia-inducible factor-2\u3b1-dependent cystein protease inhibitor that is up-regulated in hepatocellular carcinoma and in parenchymal cells during chronic liver diseases (CLD). SerpinB3 up-regulation in CLD patients has been reported to correlate with the extent of liver fibrosis and the production of transforming growth factor-\u3b21, but the actual role of SerpinB3 in hepatic fibrogenesis is still poorly characterized. In the present study we analyzed the pro-fibrogenic action of SerpinB3 in cell cultures and in two different murine models of liver fibrosis. "In vitro" experiments revealed that SerpinB3 addition to either primary cultures of human activated myofibroblast-like hepatic stellate cells (HSC/MFs) or human stellate cell line (LX2 cells) strongly up-regulated the expression of genes involved in fibrogenesis and promoted oriented migration, but not cell proliferation. Chronic liver injury by CCl4 administration or by feeding a methionine/choline deficient diet to transgenic mice over-expressing human SerpinB3 in hepatocytes confirmed that SerpinB3 over-expression significantly increased the mRNA levels of pro-fibrogenic genes, collagen deposition and \u3b1SMA-positive HSC/MFs as compared to wild-type mice, without affecting parenchymal damage. The present study provides for the first time evidence that hepatocyte release of SerpinB3 during CLD can contribute to liver fibrogenesis by acting on HSC/MFs

    SerpinB3 and Yap Interplay Increases Myc Oncogenic Activity

    Get PDF
    SerpinB3 has been recently described as an early marker of liver carcinogenesis, but the potential mechanistic role of this serpin in tumor development is still poorly understood. Overexpression of Myc often correlates with more aggressive tumour forms, supporting its involvement in carcinogenesis. Yes-associated protein (Yap), the main effector of the Hippo pathway, is a central regulator of proliferation and it has been found up-regulated in hepatocellular carcinomas. The study has been designed to investigate and characterize the interplay and functional modulation of Myc by SerpinB3 in liver cancer. Results from this study indicate that Myc was up-regulated by SerpinB3 through calpain and Hippo-dependent molecular mechanisms in transgenic mice and hepatoma cells overexpressing human SerpinB3, and also in human hepatocellular carcinomas. Human recombinant SerpinB3 was capable to inhibit the activity of Calpain in vitro, likely reducing its ability to cleave Myc in its non oncogenic Myc-nick cytoplasmic form. SerpinB3 indirectly increased the transcription of Myc through the induction of Yap pathway. These findings provide for the first time evidence that SerpinB3 can improve the production of Myc through direct and indirect mechanisms that include the inhibition of generation of its cytoplasmic form and the activation of Yap pathway

    Engineered EVs for Oxidative Stress Protection

    Get PDF
    Extracellular vesicles (EVs) are increasingly studied as vectors for drug delivery because they can transfer a variety of molecules across biological barriers. SerpinB3 is a serine protease inhibitor that has shown a protective anti-apoptotic function in a variety of stressful conditions. The aim of this study was to evaluate protection from oxidative stress-induced damage, using extracellular vesicles that overexpress SerpinB3 (EVs-SB3) in order to enhance the effect of extracellular vesicles on cellular homeostasis. EVs-SB3s were obtained from HepG2 cells engineered to overexpress SerpinB3 and they revealed significant proteomic changes, mostly characterized by a reduced expression of other proteins compared with EVs from non-engineered cells. These EV preparations showed a significantly higher protection from H2O2 induced oxidative stress in both the hepatoma cell line and in primary cardiomyocytes, compared to cells treated with naĂŻve EVs or SerpinB3 alone, used at the same concentration. In conclusion, the induction of SerpinB3 transgene expression results in the secretion of EVs enriched with the protein product that exhibits enhanced cytoprotective activity, compared with naĂŻve EVs or the nude SerpinB3 protein.Fil: Tolomeo, Anna Maria. UniversitĂ  di Padova; ItaliaFil: Quarta, Santina. UniversitĂ  di Padova; ItaliaFil: Biasiolo, Alessandra. UniversitĂ  di Padova; ItaliaFil: Ruvoletto, Mariagrazia. UniversitĂ  di Padova; ItaliaFil: Pozzobon, Michela. UniversitĂ  di Padova; ItaliaFil: De Lazzari, Giada. UniversitĂ  di Padova; ItaliaFil: Malvicini, Ricardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y BioingenierĂ­a. FundaciĂłn Favaloro. Instituto de Medicina Traslacional, Trasplante y BioingenierĂ­a; ArgentinaFil: Turato, Cristian. UniversitĂ  di Padova; ItaliaFil: Arrigoni, Giorgio. UniversitĂ  di Padova; ItaliaFil: Pontisso, Patrizia. UniversitĂ  di Padova; ItaliaFil: Muraca, Maurizio. UniversitĂ  di Padova; Itali

    Biological and clinical implications of HBV infection in peripheral blood mononuclear cells

    No full text
    The liver is the main site of HBV replication, however extrahepatic organs, such as the lymphoid system, are an important reservoir of the virus. Viral DNA into different mononuclear cell subsets has been mainly detected in monocytes and B lymphocytes. The attachment site of the virus has been identified in the preS1 encoded protein of the virus envelope, the same involved in hepatocyte infection. The risk of HBV transmission by infected lymphocytes has been clearly documented in the setting of liver transplantation where de novo HBV infection has been found in up to about 80% of liver grafts from HBsAg negative but anti-HBc positive donors. In the hemodialysis setting the percentage of HBV DNA detection in mononuclear cells of HBsAg negative patients has been described in up to 54% of the cases. Vertical transmission studies indicate that HBV-infected mononuclear cells of the mother may result in viral infection of mononuclear cells of the newborns and possible HBV vaccine response failure. HBV can also infect bone marrow cells and in vitro studies demonstrate a block of hematopoiesis by HBV, supporting clinical observations of isolate cases of aplastic anemia associated to the infection

    SERPINB3, apoptosis and autoimmunity

    Get PDF
    SERPINB3 (Squamous Cell Carcinoma Antigen, SCCA1) is a member of the ov-serpins, a serine protease inhibitors family expressed in many cell types including normal epithelium, leukocytes, tumors of epithelial origin and primary liver cancer. Several studies, carried out in vitro and in vivo, have documented an important role of SERPINB3 in the modulation of programmed cell death by different mechanisms, both in inflammatory processes and in cancer. SERPINB3 significantly attenuates apoptosis by contrasting cytochrome c release from the mitochondria and by antichemotactic effect for NK cells. Mechanisms involved in apoptosis induction and regulation play a key role in the balance between cell proliferation and death. Imbalance of this equilibrium may contribute to the development of autoimmune diseases, as defective apoptosis of immune cells leads to deregulated autoreactive cell proliferation. Since defective programmed cell death represents a critical feature of autoimmunity, the involvement of SERPINB3 in this pathological field deserves further studies
    • …
    corecore