13 research outputs found

    A Hypermorphic Missense Mutation in PLCG2, Encoding Phospholipase CĪ³2, Causes a Dominantly Inherited Autoinflammatory Disease with Immunodeficiency

    Get PDF
    Whole-exome sequencing was performed in a family affected by dominantly inherited inflammatory disease characterized by recurrent blistering skin lesions, bronchiolitis, arthralgia, ocular inflammation, enterocolitis, absence of autoantibodies, and mild immunodeficiency. Exome data from three samples, including the affected father and daughter and unaffected mother, were filtered for the exclusion of reported variants, along with benign variants, as determined by PolyPhen-2. A total of eight transcripts were identified as possible candidate genes. We confirmed a variant, c.2120C>A (p.Ser707Tyr), within PLCG2 as the only de novo variant that was present in two affected family members and not present in four unaffected members. PLCG2 encodes phospholipase CĪ³2 (PLCĪ³2), an enzyme with a critical regulatory role in various immune and inflammatory pathways. The p.Ser707Tyr substitution is located in an autoinhibitory SH2 domain that is crucial for PLCĪ³2 activation. Overexpression of the altered p.Ser707Tyr protein and exĀ vivo experiments using affected individualsā€™ leukocytes showed clearly enhanced PLCĪ³2 activity, suggesting increased intracellular signaling in the PLCĪ³2-mediated pathway. Recently, our laboratory identified in individuals with cold-induced urticaria and immune dysregulation PLCG2 exon-skipping mutations resulting in protein products with constitutive phospholipase activity but with reduced intracellular signaling at physiological temperatures. In contrast, the p.Ser707Tyr substitution in PLCĪ³2 causes a distinct inflammatory phenotype that is not provoked by cold temperatures and that has different end-organ involvement and increased intracellular signaling at physiological temperatures. Our results highlight the utility of exome-sequencing technology in finding causal mutations in nuclear families with dominantly inherited traits otherwise intractable by linkage analysis

    Potent ex vivo armed T cells using recombinant bispecific antibodies for adoptive immunotherapy with reduced cytokine release

    No full text
    Background T cell-based immunotherapies using chimeric antigen receptors (CAR) or bispecific antibodies (BsAb) have produced impressive responses in hematological malignancies. However, major hurdles remained, including cytokine release syndrome, neurotoxicity, on-target off-tumor effects, reliance on autologous T cells, and failure in most solid tumors. BsAb armed T cells offer a safe alternative.Methods We generated ex vivo armed T cells (EATs) using IgG-[L]-scFv-platformed BsAb, where the anti-CD3 (huOKT3) scFv was attached to the light chain of a tumor-binding IgG. BsAb density on EAT, in vitro cytotoxicity, cytokine release, in vivo trafficking into tumors, and their antitumor activities were evaluated in multiple cancer cell lines and patient-derived xenograft mouse models. The efficacy of EATs after cryopreservation was studied, and gamma delta (Ī³Ī“) T cells were investigated as unrelated alternative effector T cells.Results The antitumor potency of BsAb armed T cells was substantially improved using the IgG-[L]-scFv BsAb platform. When compared with separate BsAb and T cell injection, EATs released less TNF-Ī±, and infiltrated tumors faster, while achieving robust antitumor responses. The in vivo potency of EAT therapy depended on BsAb dose for arming, EAT cell number per injection, total number of EAT doses, and treatment schedule intensity. The antitumor efficacy of EATs was preserved following cryopreservation, and EATs using Ī³Ī“ T cells were safe and as effective as Ī±Ī² T cell-EATs.Conclusions EATs exerted potent antitumor activities against a broad spectrum of human cancer targets with remarkable safety. The antitumor potency of EATs depended on BsAb dose, cell number and total dose, and schedule. EATs were equally effective after cryopreservation, and the feasibility of third-party Ī³Ī“-EATs offered an alternative for autologous T cell sources

    Keystone Symposium Antibodies as Drugs 2019 ā€“ New Horizons in the Therapeutic Use of Engineered Antibodies

    No full text
    The Keystone Symposium ā€œAntibodies as Drugsā€ is one of the most well established events in the yearly confer-ence schedule for therapeutic antibodies. From April 7 -11, 2019 ca. 240 researchers from industry and academia including 40 graduate students and postdocs from 18 countries assembled in Breckenridge, Colorado for the Key-stone conference ā€œAntibodies as Drugs: New Horizons in the Therapeutic Use of Engineered Antibodiesā€. This event was organized and chaired by Christian Klein, Zurich, Mark Cragg, Southampton and Germaine Fuh, San Francisco. The plenary sessions were complemented by >70 abstracts presented in the poster session, short talks in the plenary sessions, and two dedicated workshops focusing on the use of therapeutic antibodies in oncology and immunology. The conference highlighted the growing prevalence of engineered antibodies e.g. antibody drug con-jugates, bispecific antibodies and multi-specific fusion proteins for application in various diseases ranging from oncology and immunology to neurological disorders and infectious diseases. While such modalities were previ-ously mainly explored pre-clinically, during the past years they became mainstream, reaching the clinic and begin to change the development paradigm for therapeutic antibodies

    Heterodimerization of T cell engaging bispecific antibodies to enhance specificity against pancreatic ductal adenocarcinoma

    No full text
    Abstract Background EGFR and/or HER2 expression in pancreatic cancers is correlated with poor prognoses. We generated homodimeric (EGFRxEGFR or HER2xHER2) and heterodimeric (EGFRxHER2) T cell-engaging bispecific antibodies (T-BsAbs) to direct polyclonal T cells to these antigens on pancreatic tumors. Methods EGFR and HER2 T-BsAbs were constructed using the 2ā€‰+ā€‰2 IgG-[L]-scFv T-BsAbs format bearing two anti-CD3 scFvs attached to the light chains of an IgG to engage T cells while retaining bivalent binding to tumor antigens with both Fab arms. A Fab arm exchange strategy was used to generate EGFRxHER2 heterodimeric T-BsAb carrying one Fab specific for EGFR and one for HER2. EGFR and HER2 T-BsAbs were also heterodimerized with a CD33 control T-BsAb to generate ā€˜tumor-monovalentā€™ EGFRxCD33 and HER2xCD33 T-BsAbs. T-BsAb avidity for tumor cells was studied by flow cytometry, cytotoxicity by T-cell mediated 51Chromium release, and in vivo efficacy against cell line-derived xenografts (CDX) or patient-derived xenografts (PDX). Tumor infiltration by T cells transduced with luciferase reporter was quantified by bioluminescence. Results The EGFRxEGFR, HER2xHER2, and EGFRxHER2 T-BsAbs demonstrated high avidity and T cell-mediated cytotoxicity against human pancreatic ductal adenocarcinoma (PDAC) cell lines in vitro with EC50s in the picomolar range (0.17pM to 18pM). They were highly efficient in driving human polyclonal T cells into subcutaneous PDAC xenografts and mediated potent T cell-mediated anti-tumor effects. Both EGFRxCD33 and HER2xCD33 tumor-monovalent T-BsAbs displayed substantially reduced avidity by SPR when compared to homodimeric EGFRxEGFR or HER2xHER2 T-BsAbs (āˆ¼150-fold and āˆ¼6000-fold respectively), tumor binding by FACS (8.0-fold and 63.6-fold), and T-cell mediated cytotoxicity (7.7-fold and 47.2-fold), while showing no efficacy against CDX or PDX. However, if either EGFR or HER2 was removed from SW1990 by CRISPR-mediated knockout, the in vivo efficacy of heterodimeric EGFRxHER2 T-BsAb was lost. Conclusion EGFR and HER2 were useful targets for driving T cell infiltration and tumor ablation. Two arm Fab binding to either one or both targets was critical for robust anti-tumor effect in vivo. By engaging both targets, EGFRxHER2 heterodimeric T-BsAb exhibited potent anti-tumor effects if CDX or PDX were EGFR+HER2+ double-positive with the potential to spare single-positive normal tissue

    Impaired B cell immunity in acute myeloid leukemia patients after chemotherapy

    No full text
    Abstract Background Changes in adaptive immune cells after chemotherapy in adult acute myeloid leukemia (AML) may have implications for the success of immunotherapy. This study was designed to determine the functional capacity of the immune system in adult patients with AML who have completed chemotherapy and are potential candidates for immunotherapy. Methods We used the response to seasonal influenza vaccination as a surrogate for the robustness of the immune system in 10 AML patients in a complete remission post-chemotherapy and performed genetic, phenotypic, and functional characterization of adaptive immune cell subsets. Results Only 2 patients generated protective titers in response to vaccination, and a majority of patients had abnormal frequencies of transitional and memory B-cells. B-cell receptor sequencing showed a B-cell repertoire with little evidence of somatic hypermutation in most patients. Conversely, frequencies of T-cell populations were similar to those seen in healthy controls, and cytotoxic T-cells demonstrated antigen-specific activity after vaccination. Effector T-cells had increased PD-1 expression in AML patients least removed from chemotherapy. Conclusion Our results suggest that while some aspects of cellular immunity recover quickly, humoral immunity is incompletely reconstituted in the year following intensive cytotoxic chemotherapy for AML. The observed B-cell abnormalities may explain the poor response to vaccination often seen in AML patients after chemotherapy. Furthermore, the uncoupled recovery of B-cell and T-cell immunity and increased PD-1 expression shortly after chemotherapy might have implications for the success of several modalities of immunotherapy
    corecore