7 research outputs found

    Phase II Trial of Dabrafenib Plus Trametinib in Relapsed/Refractory BRAF V600-Mutant Pediatric High-Grade Glioma

    Get PDF
    PURPOSE: BRAF V600 mutation is detected in 5%-10% of pediatric high-grade gliomas (pHGGs), and effective treatments are limited. In previous trials, dabrafenib as monotherapy or in combination with trametinib demonstrated activity in children and adults with relapsed/refractory BRAF V600-mutant HGG. METHODS: This phase II study evaluated dabrafenib plus trametinib in patients with relapsed/refractory BRAF V600-mutant pHGG. The primary objective was overall response rate (ORR) by independent review by Response Assessment in Neuro-Oncology criteria. Secondary objectives included ORR by investigator determination, duration of response (DOR), progression-free survival, overall survival (OS), and safety. RESULTS: A total of 41 pediatric patients with previously treated BRAF V600-mutant HGG were enrolled. At primary analysis, median follow-up was 25.1 months, and 51% of patients remained on treatment. Sixteen of 20 discontinuations were due to progressive disease in this relapsed/refractory pHGG population. Independently assessed ORR was 56% (95% CI, 40 to 72). Median DOR was 22.2 months (95% CI, 7.6 months to not reached [NR]). Fourteen deaths were reported. Median OS was 32.8 months (95% CI, 19.2 months to NR). The most common all-cause adverse events (AEs) were pyrexia (51%), headache (34%), and dry skin (32%). Two patients (5%) had AEs (both rash) leading to discontinuation. CONCLUSION: In relapsed/refractory BRAF V600-mutant pHGG, dabrafenib plus trametinib improved ORR versus previous trials of chemotherapy in molecularly unselected patients with pHGG and was associated with durable responses and encouraging survival. These findings suggest that dabrafenib plus trametinib is a promising targeted therapy option for children and adolescents with relapsed/refractory BRAF V600-mutant HGG

    Atypical teratoid/rhabdoid tumors (ATRTs) with SMARCA4 mutation are molecularly distinct from SMARCB1-deficient cases

    Get PDF
    Atypical teratoid/rhabdoid tumors (ATRTs) are very aggressive childhood malignancies of the central nervous system. The underlying genetic cause are inactivating bi-allelic mutations in SMARCB1 or (rarely) in SMARCA4. ATRT-SMARCA4 have been associated with a higher frequency of germline mutations, younger age, and an inferior prognosis in comparison to SMARCB1 mutated cases. Based on their DNA methylation profiles and transcriptomics, SMARCB1 mutated ATRTs have been divided into three distinct molecular subgroups: ATRT-TYR, ATRT-SHH, and ATRT-MYC. These subgroups differ in terms of age at diagnosis, tumor location, type of SMARCB1 alterations, and overall survival. ATRT-SMARCA4 are, however, less well understood, and it remains unknown, whether they belong to one of the described ATRT subgroups. Here, we examined 14 ATRT-SMARCA4 by global DNA methylation analyses. We show that they form a separate group segregating from SMARCB1 mutated ATRTs and from other SMARCA4-deficient tumors like small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) or SMARCA4 mutated extra-cranial malignant rhabdoid tumors. In contrast, medulloblastoma (MB) samples with heterozygous SMARCA4 mutations do not group separately, but with established MB subgroups. RNA sequencing of ATRT-SMARCA4 confirmed the clustering results based on DNA methylation profiling and displayed an absence of typical signature genes upregulated in SMARCB1 deleted ATRT. In summary, our results suggest that, in line with previous clinical observations, ATRT-SMARCA4 should be regarded as a distinct molecular subgroup

    Contributors

    No full text
    corecore