14 research outputs found

    Systemic Delivery of Oncolytic Adenovirus to Tumors Using Tumor-Infiltrating Lymphocytes as Carriers

    Get PDF
    Immunotherapy with tumor-infiltrating lymphocytes (TIL) or oncolytic adenoviruses, have shown promising results in cancer treatment, when used as separate therapies. When used in combination, the antitumor effect is synergistically potentiated due oncolytic adenovirus infection and its immune stimulating effects on T cells. Indeed, studies in hamsters have shown a 100% complete response rate when animals were treated with oncolytic adenovirus coding for TNFa and IL-2 (Ad5/3-E2F-D24-hTNFa-IRES-hIL2; TILT-123) and TIL therapy. In humans, one caveat with oncolytic virus therapy is that intratumoral injection has been traditionally preferred over systemic administration, for achieving sufficient virus concentrations in tumors, especially when neutralizing antibodies emerge. We have previously shown that 5/3 chimeric oncolytic adenovirus can bind to human lymphocytes for avoidance of neutralization. In this study, we hypothesized that incubation of oncolytic adenovirus (TILT-123) with TILs prior to systemic injection would allow delivery of virus to tumors. This approach would deliver both components in one self-amplifying product. TILs would help deliver TILT-123, whose replication will recruit more TILs and increase their cytotoxicity. In vitro, TILT-123 was seen binding efficiently to lymphocytes, supporting the idea of dual administration. We show in vivo in different models that virus could be delivered to tumors with TILs as carriers.Peer reviewe

    Adenovirus Encoding Tumor Necrosis Factor Alpha and Interleukin 2 Induces a Tertiary Lymphoid Structure Signature in Immune Checkpoint Inhibitor Refractory Head and Neck Cancer

    Get PDF
    Immune checkpoint inhibitors (ICI) have provided significant improvement in clinical outcomes for some patients with solid tumors. However, for patients with head and neck cancer, the response rate to ICI monotherapy remains low, leading to the exploration of combinatorial treatment strategies. In this preclinical study, we use an oncolytic adenovirus (Ad5/3) encoding hTNF alpha and hIL-2 and non-replicate adenoviruses (Ad5) encoding mTNF alpha and mIL-2 with ICI to achieve superior tumor growth control and improved survival outcomes. The in vitro effect of Ad5/3-E2F-D24-hTNFa-IRES-hIL-2 was characterized through analyses of virus replication, transgene expression and lytic activity using head and neck cancer patient derived cell lines. Mouse models of ICI naive and refractory oral cavity squamous cell carcinoma were established to evaluate the local and systemic anti-tumor immune response upon ICI treatment with or without the non-replicative adenovirus encoding mTNF alpha and mIL-2. We delineated the mechanism of action by measuring the metabolic activity and effector function of CD3(+) tumor infiltrating lymphocytes (TIL) and transcriptomic profile of the CD45(+) tumor immune compartment. Ad5/3-E2F-D24-hTNFa-IRES-hIL-2 demonstrated robust replicative capability in vitro across all head and neck cell lines screened through potent lytic activity, E1a and transgene expression. In vivo, in both ICI naive and refractory models, we observed improvement to tumor growth control and long-term survival when combining anti-PD-1 or anti-PD-L1 with the non-replicative adenovirus encoding mTNF alpha and mIL-2 compared to monotherapies. This observation was verified by striking CD3(+) TIL derived mGranzyme b and interferon gamma production complemented by increased T cell bioenergetics. Notably, interrogation of the tumor immune transcriptome revealed the upregulation of a gene signature distinctive of tertiary lymphoid structure formation upon treatment of murine anti-PD-L1 refractory tumors with non-replicative adenovirus encoding mTNF alpha and mIL-2. In addition, we detected an increase in anti-tumor antibody production and expansion of the memory T cell compartment in the secondary lymphoid organs. In summary, a non-replicative adenovirus encoding mTNF alpha and mIL-2 potentiates ICI therapy, demonstrated by improved tumor growth control and survival in head and neck tumor-bearing mice. Moreover, the data reveals a potential approach for inducing tertiary lymphoid structure formation. Altogether our results support the clinical potential of combining this adenovirotherapy with anti-PD-1 or anti-PD-L1.Peer reviewe

    Adenovirus Encoding Tumor Necrosis Factor Alpha and Interleukin 2 Induces a Tertiary Lymphoid Structure Signature in Immune Checkpoint Inhibitor Refractory Head and Neck Cancer

    Get PDF
    Immune checkpoint inhibitors (ICI) have provided significant improvement in clinical outcomes for some patients with solid tumors. However, for patients with head and neck cancer, the response rate to ICI monotherapy remains low, leading to the exploration of combinatorial treatment strategies. In this preclinical study, we use an oncolytic adenovirus (Ad5/3) encoding hTNF alpha and hIL-2 and non-replicate adenoviruses (Ad5) encoding mTNF alpha and mIL-2 with ICI to achieve superior tumor growth control and improved survival outcomes. The in vitro effect of Ad5/3-E2F-D24-hTNFa-IRES-hIL-2 was characterized through analyses of virus replication, transgene expression and lytic activity using head and neck cancer patient derived cell lines. Mouse models of ICI naive and refractory oral cavity squamous cell carcinoma were established to evaluate the local and systemic anti-tumor immune response upon ICI treatment with or without the non-replicative adenovirus encoding mTNF alpha and mIL-2. We delineated the mechanism of action by measuring the metabolic activity and effector function of CD3(+) tumor infiltrating lymphocytes (TIL) and transcriptomic profile of the CD45(+) tumor immune compartment. Ad5/3-E2F-D24-hTNFa-IRES-hIL-2 demonstrated robust replicative capability in vitro across all head and neck cell lines screened through potent lytic activity, E1a and transgene expression. In vivo, in both ICI naive and refractory models, we observed improvement to tumor growth control and long-term survival when combining anti-PD-1 or anti-PD-L1 with the non-replicative adenovirus encoding mTNF alpha and mIL-2 compared to monotherapies. This observation was verified by striking CD3(+) TIL derived mGranzyme b and interferon gamma production complemented by increased T cell bioenergetics. Notably, interrogation of the tumor immune transcriptome revealed the upregulation of a gene signature distinctive of tertiary lymphoid structure formation upon treatment of murine anti-PD-L1 refractory tumors with non-replicative adenovirus encoding mTNF alpha and mIL-2. In addition, we detected an increase in anti-tumor antibody production and expansion of the memory T cell compartment in the secondary lymphoid organs. In summary, a non-replicative adenovirus encoding mTNF alpha and mIL-2 potentiates ICI therapy, demonstrated by improved tumor growth control and survival in head and neck tumor-bearing mice. Moreover, the data reveals a potential approach for inducing tertiary lymphoid structure formation. Altogether our results support the clinical potential of combining this adenovirotherapy with anti-PD-1 or anti-PD-L1.Peer reviewe

    Local delivery of interleukin 7 with an oncolytic adenovirus activates tumor-infiltrating lymphocytes and causes tumor regression

    Get PDF
    Cytokines have proven to be effective for cancer therapy, however whilst low-dose monotherapy with cytokines provides limited therapeutic benefit, high-dose treatment can lead to a number of adverse events. Interleukin 7 has shown promising results in clinical trials, but anti-cancer effect was limited, in part due to a low concentration of the cytokine within the tumor. We hypothesized that arming an oncolytic adenovirus with Interleukin 7, enabling high expression localized to the tumor microenvironment, would overcome systemic delivery issues and improve therapeutic efficacy. We evaluated the effects of Ad5/3-E2F-d24-hIL7 (TILT-517) on tumor growth, immune cell activation and cytokine profiles in the tumor microenvironment using three clinically relevant animal models and ex vivo tumor cultures. Our data showed that local treatment of tumor bearing animals with Ad5/3- E2F-d24-hIL7 significantly decreased cancer growth and increased frequency of tumor-infiltrating cells. Ad5/3-E2F-d24-hIL7 promoted notable upregulation of pro-inflammatory cytokines, and concomitant activation and migration of CD4+ and CD8 + T cells. Interleukin 7 expression within the tumor was positively correlated with increased number of cytotoxic CD4+ cells and IFNg-producing CD4+ and CD8+ cells. These findings offer an approach to overcome the current limitations of conventional IL7 therapy and could therefore be translated to the clinic.Peer reviewe

    An oncolytic adenovirus coding for a variant interleukin 2 cytokine improves response to chemotherapy through enhancement of effector lymphocyte cytotoxicity, fibroblast compartment modulation and mitotic slippage

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is a highly treatment-resistant cancer. Currently, the only curative treatment for PDAC is surgery, but most patients are diagnosed with metastatic disease and thus outside the scope of surgery. The majority of metastatic patients receive chemotherapy, but responses are limited. New therapeutics are thus urgently needed for PDAC. One major limitation in treating PDAC has been the highly immunosuppressive tumor microenvironment (TME) which inhibits anti-cancer immune responses. We have constructed an oncolytic adenovirus coding for a variant the interleukin 2 molecule, Ad5/3-E2F-d24-vIL2 (also known as TILT-452, and “vIL-2 virus”), with preferential binding to IL-2 receptors on the surface of effector lymphocytes over T regulatory cells (T regs). In the present study this virus was evaluated in combination with nab-paclitaxel and gemcitabine chemotherapy in Panc02 mouse model. Ad5/3-E2F-d24-vIL2 showed marked PDAC cell killing in vitro, alongside induction of mitotic slippage and immunogenic cell death in PDAC cell lines, when combined with chemotherapy. Increased survival was seen in vivo with 80% of animals surviving long term, when compared to chemotherapy alone. Moreover, combination therapy mediated enhanced tumor growth control, without observable toxicities in internal organs or external features. Survival and tumor control benefits were associated with activation of tumor infiltrating immune cells, downregulation of inhibitory signals, change in fibroblast populations in the tumors and changes in intratumoral cytokines, with increased chemokine amounts (CCL2, CCL3, CCL4) and anti-tumor cytokines (IFN-γ and TNFα). Furthermore, vIL-2 virus in combination with chemotherapy efficiently induced tumor protection upon rechallenge, that was extended to a previously non-encountered cancer cell line. In conclusion, Ad5/3-E2F-d24-vIL2 is a promising immunotherapy candidate when combined with nab-paclitaxel and gemcitabine
    corecore