56 research outputs found
Spiropyran/Merocyanine Amphiphile in Various Solvents: A Joint Experimental–Theoretical Approach to Photophysical Properties and Self-Assembly
This joint experimental-theoretical work focuses on molecular and photophysical properties of the spiropyran-containing amphiphilic molecule in organic and aqueous solutions. Being dissolved in tested organic solvents, the system demonstrates positive photochromism, i.e., upon UV stimulus the colorless spiropyran form is transformed into colorful merocyanine isomer. However, the aqueous solution of the amphiphile possesses a negative photochromism: the orange-red merocyanine form becomes thermodynamically more stable in water, and both UV and vis stimuli lead to the partial or complete photobleaching of the solution. The explanation of this phenomenon is given on the basis of density functional theory calculations and classical modeling including thermodynamic integration. The simulations reveal that stabilization of merocyanine in water proceeds with the energy of ca. 70 kJ mol−1, and that the Helmholtz free energy of hydration of merocyanine form is 100 kJ mol−1 lower as compared to the behavior of SP isomer in water. The explanation of such a difference lies in the molecular properties of the merocyanine: after ring-opening reaction this molecule transforms into a zwitterionic form, as evidenced by the electrostatic potential plotted around the opened form. The presence of three charged groups on the periphery of a flat conjugated backbone stimulates the self-assembly of merocyanine molecules in water, ending up with the formation of elongated associates with stack-like building blocks, as shown in molecular dynamics simulations of the aqueous solution with the concentration above critical micelle concentration. Our quantitative evaluation of the hydrophilicity switching in spiropyran/merocyanine containing surfactants may prompt the search for new systems, including colloidal and polymeric ones, aiming at remote tuning of their morphology, which could give new promising shapes and patterns for the needs of modern nanotechnology
Recommended from our members
Tuning the Volume Phase Transition Temperature of Microgels by Light
Temperature-responsive microgels find widespread applications as soft materials for designing actuators in microfluidic systems, as carriers for drug delivery or catalysts, as functional coatings, and as adaptable sensors. The key property is their volume phase transition temperature, which allows for thermally induced reversible swelling/deswelling. It is determined by the gel's chemical structure as well as network topology and cannot be varied easily within one system. Here a paradigm change of this notion by facilitating a light-triggered reversible switching of the microgel volume in the range between 32 and 82 °C is suggested. Photo-sensitivity is introduced by photosensitive azobenzene containing surfactant, which forms a complex with microgels consisting of poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-AAc) chains when assuming a hydrophobic trans-state, and prefers to leave the gel matrix in its cis-state. Using a similar strategy, it is demonstrated that at a fixed temperature, for example, 37 °C, one can reversibly change the microgel radius by a factor of 3 (7–21 µm) by irradiating either with UV (collapsed state) or green light (swollen state). It is envisaged that the possibility to deploy a swift external means of adapting the swelling behavior of microgels may impact and redefine the latter's application across all fields. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH Gmb
Light-Induced Manipulation of Passive and Active Microparticles
We consider sedimented at a solid wall particles that are immersed in water
containing small additives of photosensitive ionic surfactants. It is shown
that illumination with an appropriate wavelength, a beam intensity profile,
shape and size could lead to a variety of dynamic, both unsteady and
steady-state, configurations of particles. These dynamic, well-controlled and
switchable particle patterns at the wall are due to an emerging
diffusio-osmotic flow that takes its origin in the adjacent to the wall
electrostatic diffuse layer, where the concentration gradients of surfactant
are induced by light. The conventional nonporous particles are passive and can
move only with already generated flow. However, porous colloids actively
participate themselves in the flow generation mechanism at the wall, which also
sets their interactions that can be very long ranged. This light-induced
diffusio-osmosis opens novel avenues to manipulate colloidal particles and
assemble them to various patterns. We show in particular how to create and
split optically the confined regions of particles of tunable size and shape,
where well controlled flow-induced forces on the colloids could result in their
cristalline packing, formation of dilute lattices of well-separated particles,
and other states.Comment: 11 pages, 14 figure
Direct Resolution of the Interactions of a Hydrocarbon Gas with Adsorbed Surfactant Monolayers at the Water/Air Interface Using Neutron Reflectometry
We have directly resolved in the present work the interfacial composition during and after the interactions of a saturated atmosphere of oil vapor with soluble surfactant solutions at a planar water/air interface for the first time. Experiments were conducted on interactions of hexane vapor with solutions of alkyltrimethylammonium bromides and sodium dodecyl sulfate to observe the balance between cooperativity and competition of the components at the interface. In all cases, hexane adsorption was strongly enhanced by the presence of the surfactant, even at bulk surfactant concentrations four orders of magnitude below the critical micelle concentration. Cooperativity of the surfactant adsorption was observed only for sodium dodecyl sulfate at intermediate bulk concentrations, yet for all four systems, competition set in at higher concentrations, as hexane adsorption reduced the surfactant surface excess. The data fully supported the complete removal of hexane from the interface following venting of the system to remove the saturated atmosphere of oil vapor. These results help to identify future experiments that would elaborate and could explain the cooperativity of surfactant adsorption, such as on cationic surfactants with short alkyl chains and a broader series of anionic surfactants. This work holds relevance for oil recovery applications with foam, where there is a gas phase saturated with oil vapor
Communication: Light driven remote control of microgels’ size in the presence of photosensitive surfactant: Complete phase diagram
Here we report on a light triggered remote control of microgel size in the presence of photosensitive surfactant. The hydrophobic tail of the cationic surfactant contains azobenzene group that undergoes a reversible photo-isomerization reaction from a trans- to a cis-state accompanied by a change in the hydrophobicity of the surfactant. We have investigated light assisted behaviour and the complex formation of the microgels with azobenzene containing surfactant over the broad concentrational range starting far below and exceeding several times of the critical micelle concentration (CMC). At small surfactant concentration in solution (far below CMC), the surfactant in the trans-state accommodates within the microgel causing its compaction, while the cis-isomer desorbs out of microgel resulting in its swelling. The process of the microgel size change can be described as swelling on UV irradiation (trans-cis isomerization) and shrinking on irradiation with blue light (cis-trans isomerization). However, at the surfactant concentrations larger than CMC, the opposite behaviour is observed: the microgel swells on blue irradiation and shrinks during exposure to UV light. We explain this behaviour theoretically taking into account isomer dependent micellization of surfactant within the microgels
DNA Interaction with Head-to-Tail Associates of Cationic Surfactants Prevents Formation of Compact Particles
Cationic azobenzene-containing surfactants are capable of condensing DNA in solution with formation of nanosized particles that can be employed in gene delivery. The ratio of surfactant/DNA concentration and solution ionic strength determines the result of DNA-surfactant interaction: Complexes with a micelle-like surfactant associates on DNA, which induces DNA shrinkage, DNA precipitation or DNA condensation with the emergence of nanosized particles. UV and fluorescence spectroscopy, low gradient viscometry and flow birefringence methods were employed to investigate DNA-surfactant and surfactant-surfactant interaction at different NaCl concentrations, [NaCl]. It was observed that [NaCl] (or the Debye screening radius) determines the surfactant-surfactant interaction in solutions without DNA. Monomers, micelles and non-micellar associates of azobenzene-containing surfactants with head-to-tail orientation of molecules were distinguished due to the features of their absorption spectra. The novel data enabled us to conclude that exactly the type of associates (together with the concentration of components) determines the result of DNA-surfactant interaction. Predomination of head-to-tail associates at 0.01 M < [NaCl] < 0.5 M induces DNA aggregation and in some cases DNA precipitation. High NaCl concentration (higher than 0.8 M) prevents electrostatic attraction of surfactants to DNA phosphates for complex formation. DAPI dye luminescence in solutions with DNA-surfactant complexes shows that surfactant tails overlap the DNA minor groove. The addition of di- and trivalent metal ions before and after the surfactant binding to DNA indicate that the bound surfactant molecules are located on DNA in islets
Spiropyran/Merocyanine Amphiphile in Various Solvents: A Joint Experimental–Theoretical Approach to Photophysical Properties and Self-Assembly
This joint experimental-theoretical work focuses on molecular and photophysical properties of the spiropyran-containing amphiphilic molecule in organic and aqueous solutions. Being dissolved in tested organic solvents, the system demonstrates positive photochromism, i.e., upon UV stimulus the colorless spiropyran form is transformed into colorful merocyanine isomer. However, the aqueous solution of the amphiphile possesses a negative photochromism: the orange-red merocyanine form becomes thermodynamically more stable in water, and both UV and vis stimuli lead to the partial or complete photobleaching of the solution. The explanation of this phenomenon is given on the basis of density functional theory calculations and classical modeling including thermodynamic integration. The simulations reveal that stabilization of merocyanine in water proceeds with the energy of ca. 70 kJ mol−1, and that the Helmholtz free energy of hydration of merocyanine form is 100 kJ mol−1 lower as compared to the behavior of SP isomer in water. The explanation of such a difference lies in the molecular properties of the merocyanine: after ring-opening reaction this molecule transforms into a zwitterionic form, as evidenced by the electrostatic potential plotted around the opened form. The presence of three charged groups on the periphery of a flat conjugated backbone stimulates the self-assembly of merocyanine molecules in water, ending up with the formation of elongated associates with stack-like building blocks, as shown in molecular dynamics simulations of the aqueous solution with the concentration above critical micelle concentration. Our quantitative evaluation of the hydrophilicity switching in spiropyran/merocyanine containing surfactants may prompt the search for new systems, including colloidal and polymeric ones, aiming at remote tuning of their morphology, which could give new promising shapes and patterns for the needs of modern nanotechnology
Viscoplastic Modeling of Surface Relief Grating Growth on Isotropic and Preoriented Azopolymer Films
We report on solving of two intriguing issues concerning the inscription of surface relief gratings within azopolymer thin films under irradiation with SS, PP and RL interference patterns. For this, we utilize the orientation approach and viscoplastic modeling in combination with experimental results, where the change in surface topography is acquired in situ during irradiation with modulated light. First, the initial orientation state of polymer backbones is proved to be responsible for the contradictory experimental reports on the efficiency of the SS interference pattern. Different orientation states can influence not only the phase of SS grating but also its height, which is experimentally confirmed by using special pretreatments. Second, the faster growth of gratings inscribed by the RL interference pattern is shown to be promoted by a weak photosoftening effect. Overall, the modeled results are in good agreement with the order of relative growth efficiency: RL–PP–SS
- …