9 research outputs found

    Impaired dendritic cell proinflammatory cytokine production in psoriatic arthritis

    Get PDF
    Item does not contain fulltextOBJECTIVE: The pathogenesis of psoriatic arthritis (PsA) remains poorly understood. The underlying chronic inflammatory immune response is thought to be triggered by unknown environmental factors potentially arising from a defective immune function. We undertook this study to determine whether an impaired acute inflammatory response by dendritic cells (DCs) might compromise the clearance of bacteria and predispose to chronic inflammation. METHODS: We determined cytokine production by DCs from healthy controls and from patients with rheumatoid arthritis, PsA, and psoriasis in response to Mycobacterium tuberculosis, Mycobacterium avium paratuberculosis, and a range of other bacteria and Toll-like receptor (TLR) ligands. Phenotypic differences involved in cellular responses against (myco)bacteria were determined by quantitative polymerase chain reaction and flow cytometry. RESULTS: The secretion of proinflammatory cytokines by PsA DCs was impaired upon in vitro challenge with mycobacteria and TLR-2 ligands. This impairment was associated with elevated serum levels of C-reactive protein. The expression of TLR-2 and other receptors known to mediate mycobacterial recognition was unaltered. In contrast, the intracellular TLR inhibitors suppressor of cytokine signaling 3 and A20 were more highly expressed in DCs from PsA patients. PsA DCs further demonstrated up-regulated levels of ATG16L1, NADPH oxidase 2, and LL37, which are molecules implicated in the immune response against intracellular bacteria. CONCLUSION: Our findings indicate that DCs from PsA patients have a disordered immune response toward some species of (myco)bacteria. This might predispose to impaired immune responses to, and in turn impaired clearance of, these bacteria, setting the stage for the chronic inflammation of joints, entheses, skin, and the gut

    Putative tumour suppressor gene necdin is hypermethylated and mutated in human cancer

    Get PDF
    BACKGROUND: Necdin (NDN) expression is downregulated in telomerase-immortalised normal human urothelial cells. Telomerase-immortalised normal human urothelial cells have no detected genetic alterations. Accordingly, many of the genes whose expression is altered following immortalisation are those for which epigenetic silencing is reported. METHODS: NDN expression was examined in normal tissues and tumour cell lines by quantitative real-time PCR and immunoblotting. Immunohistochemistry was performed on urothelial carcinoma (UC). Urothelial carcinoma and UC cell lines were subject to HumanMethylation27 BeadChip Array-based methylation analyses. Mutation screening was performed. The functional significance of NDN expression was investigated using retroviral-mediated downregulation or overexpression. RESULTS: NDN protein was widely expressed in normal tissues. Loss of expression was observed in 38 out of 44 (86%) of UC cell lines and 19 out of 25 (76%) of non-UC cell lines. Loss of NDN protein was found in the majority of primary UC. Oncomine analysis demonstrated downregulation of expression in multiple tumour types. In UC, tumour-specific hypermethylation of NDN and key CpG sites where hypermethylation correlated with reduced expression were identified. Six novel mutations, including some of predicted functional significance, were identified in colorectal and ovarian cancer cell lines. Functional studies showed that NDN could suppress colony formation at low cell density and affect anchorage-independent growth and anoikis in vitro. CONCLUSION: NDN is a novel tumour suppressor candidate that is downregulated and hypermethylated or mutated in cancer

    Actively personalized vaccination trial for newly diagnosed glioblastoma

    No full text
    Patients with glioblastoma currently do not sufficiently benefit from recent breakthroughs in cancer treatment that use checkpoint inhibitors1,2. For treatments using checkpoint inhibitors to be successful, a high mutational load and responses to neoepitopes are thought to be essential3. There is limited intratumoural infiltration of immune cells4 in glioblastoma and these tumours contain only 30–50 non-synonymous mutations5. Exploitation of the full repertoire of tumour antigens—that is, both unmutated antigens and neoepitopes—may offer more effective immunotherapies, especially for tumours with a low mutational load. Here, in the phase I trial GAPVAC-101 of the Glioma Actively Personalized Vaccine Consortium (GAPVAC), we integrated highly individualized vaccinations with both types of tumour antigens into standard care to optimally exploit the limited target space for patients with newly diagnosed glioblastoma. Fifteen patients with glioblastomas positive for human leukocyte antigen (HLA)-A*02:01 or HLA-A*24:02 were treated with a vaccine (APVAC1) derived from a premanufactured library of unmutated antigens followed by treatment with APVAC2, which preferentially targeted neoepitopes. Personalization was based on mutations and analyses of the transcriptomes and immunopeptidomes of the individual tumours. The GAPVAC approach was feasible and vaccines that had poly-ICLC (polyriboinosinic-polyribocytidylic acid-poly-l-lysine carboxymethylcellulose) and granulocyte–macrophage colony-stimulating factor as adjuvants displayed favourable safety and strong immunogenicity. Unmutated APVAC1 antigens elicited sustained responses of central memory CD8+ T cells. APVAC2 induced predominantly CD4+ T cell responses of T helper 1 type against predicted neoepitopes.</p

    Actively personalized vaccination trial for newly diagnosed glioblastoma

    No full text

    Regulatory T Cells: the Many Faces of Foxp3

    No full text

    Pre-rheumatoid arthritis: predisposition and transition to clinical synovitis

    No full text
    corecore