229 research outputs found

    Manufacturing Logistics and Packaging Management Using RFID

    Get PDF
    none2The chapter is centred on the analysis of internal flow traceability of goods (products and/or packaging) along the supply chain by an Indoor Positioning System (IPS) based on Radio Frequency IDentification (RFID) technology. A typical supply chain is an end-to-end process with the main purpose of production, transportation, and distribution of products. It is relative to the products’ movements from the supplier to the manufacturer, distributor, retailer and finally to the end consumer. Moreover, a supply chain is a complex amalgam of parties that require coordination, collaboration, and information exchange among them to increase productivity and efficiency [1, 2]. A supply chain is made up of people, activities, and resources involved in moving products from suppliers to customers and information from customers to suppliers. For this reason, the traceability of logistics flows (physical and information) is a very important issue for the definition and design of manufacturing processes, improvement of layout and increase of security in work areas. European Parliament (Regulation (EC) No. 178/2002) [3] makes it compulsory to trace goods and record all steps, used materials, manufacturing processes, etc. during the entire life cycle of a product [4]. According to the European Parliament, companies recognize the need and importance of tracing materials in indoor environments. Traditionally, the traceability system is performed through the asynchronous fulfilment of checkpoints (i.e. doorways) by materials. In such cases, the tracking is manual, executed by operators. Often companies are not aware of the inefficiencies due to these systems of traceability such as low precision and accuracy in measurements (i.e. no information between doorways), more time spent by operators and costs (due to the full-effort of operators who have to trace target positions and movements). According to [5] every day millions of transport units (cases, boxes, pallets, and containers) are managed worldwide with limited or even with lack of knowledge regarding their status in real-time. In order to overcome the lack of data due to traceability, automatic identification procedures (Auto-ID) could be a solution. They have become very popular in many service industries, purchasing and distribution logistics, manufacturing companies and material flow systems. Automatic identification procedures provide information about people, vehicles, goods, and products in transit within the company [6]. It is possible to note several advantages using an automatic identification system such as the reduction of theft, increase of security during the transport and distribution of assets, and increase of knowledge of objects’ position in real-time. Automatic identification procedures can also be applied to packaging products, instead of to each item contained in the package. Packaging is becoming the cornerstone of processing activities [7]. Sometimes products are very expensive and packages contain important and critical goods (for example dangerous or explosive materials) and the tracking of goods – and packaging in particular – is a critical function. The main advantage of automatic system application to packages is the possibility to map the path of all items contained into the packages and to find out their real-time position. The installation of automatic systems in packages allows costs and time to be reduced (by installing, for example, the tag directly on the package instead of on each product contained inside the package). The purpose of the chapter is to provide an innovative automatic solution for the traceability of everything that moves within a company, in order to simplify and improve the process of logistics flow traceability and logistics optimization. The chapter deals with experimental research that consists of several tests, static and dynamic, tracing the position (static) and movements (dynamic) of targets (e.g. people, vehicles, objects) in indoor environments. In order to identify the best system to use in the real-time traceability of products, the authors have chosen Real Time Location Systems (RTLSs) and, in particular, the Indoor Positioning Systems (IPSs) based on Radio Frequency IDentification (RFID) technology. The authors discuss the RFID based system using UWB technology, both in terms of design of the system and real applications. The chapter is organized as follows: Section 2 briefly describes IPS systems, looking in more depth at RFID technology. After that the experimental research with the relative results and discussion are described in Section 3. Section 4 presents an analysis of RFID traceability systems applied to packaging. Conclusions and further research are discussed in Section 5.mixedREGATTIERI A.; SANTARELLI GREGATTIERI A.; SANTARELLI

    The Important Role of Packaging in Operations Management

    Get PDF
    The chapter focuses on the analysis of the impact of packaging in Operations Management (OM) along the whole supply chain. The product packaging system (i.e. primary, secondary and tertiary packages and accessories) is highly relevant in the supply chain and its importance is growing because of the necessity to minimize costs, reduce the environmental impact and also due to the development of web operations (i.e. electronic commerce). A typical supply chain is an end-to-end process with the main purpose of production, transportation, and distribution of products. It is relative to the products\u2019 movements normally from the supplier to the manufacturer, distributor, retailer and finally the end consumer. All products moved are contained in packages and for this reason the analysis of the physical logistics flows and the role of packaging is a very important issue for the definition and design of manufacturing processes, improvement of layout and increase in companies\u2019 efficiency. In recent years, companies have started to consider packaging as a critical issue. It is necessary to analyse the packages\u2019 characteristics (e.g. shape, materials, transport, etc.) in order to improve the performance of companies and minimize their costs. Packaging concerns all activities of a company: from the purchasing of raw materials to the production and sale of finished products, and during transport and distribution. In order to manage the activities directly linked with the manufacturing of products (and consequently with the packaging system), the OM discipline is defined. It is responsible for collecting various inputs and converting them into desired outputs through operations [1]. Recently, more and more companies have started to use web operations. Electronic commerce (e-commerce) is the most promising application of information technology witnessedin recent years. It is revolutionising supply chain management and has enormous potential for manufacturing, retail and service operations. The role of packaging changes with the increase in the use of e-commerce: from the traditional \u201cshop window\u201d it has become a means of information and containment of products. The purpose of the chapter is to briefly describe a model of OM discipline usable to highlight the role of packaging along the supply chain, describing different implications of an efficient product packaging system for successful management of operations. Particular attention is paid to the role of product packaging in modern web operations. The chapter is organised as follows: Section 2 presents a brief description of OM in order to engage the topic of packaging. The packaging logistics system is described in Section 3, before presenting experimental results of studies dealing with packaging perception by both companies and customers [2; 3]. Moreover, Section 3 introduces the packaging logistics system also including the analysis of the role of packaging in OM and a description of a complete mathematical model for the evaluation of total packaging cost is presented. Section 4 presents background about modern e-commerce and its relationship with OM. Packaging and e-commerce connected with OM is described in Section 5 and a case study on packaging e-commerce in operations is analysed in Section 6. Finally, the conclusion and further research are presented

    Apigenin, by activating p53 and inhibiting STAT3, modulates the balance between pro-apoptotic and pro-survival pathways to induce PEL cell death

    Get PDF
    BACKGROUND: Apigenin is a flavonoid widely distributed in plant kingdom that exerts cytotoxic effects against a variety of solid and haematological cancers. In this study, we investigated the effect of apigenin against primary effusion lymphoma (PEL), a KSHV-associated B cell lymphoma characterized by a very aggressive behavior, displaying constitutive activation of STAT3 as well as of other oncogenic pathways and harboring wtp53. METHODS: Cell death was assessed by trypan blue exclusion assay, FACS analysis as well as by biochemical studies. The latter were also utilized to detect the occurrence of autophagy and the molecular mechanisms leading to the activation of both processes by apigenin. FACS analysis was used to measure the intracellular ROS utilizing DCFDA. RESULTS: We show that apigenin induced PEL cell death and autophagy along with reduction of intracellular ROS. Mechanistically, apigenin activated p53 that induced catalase, a ROS scavenger enzyme, and inhibited STAT3, the most important pro-survival pathway in PEL, as assessed by p53 silencing. On the other hand, STAT3 inhibition by apigenin resulted in p53 activation, since STAT3 negatively influences p53 activity, highlighting a regulatory loop between these two pathways that modulates PEL cell death/survival. CONCLUSION: The findings of this study demonstrate that apigenin may modulate pro-apoptotic and pro-survival pathways representing a valid therapeutic strategy against PEL

    Targeting of Prosurvival Pathways as Therapeutic Approaches against Primary Effusion Lymphomas: Past, Present, and Future

    Get PDF
    Constitutively activated prosurvival pathways render cancer cells addicted to their effects. Consequently they turn out to be the Achilles’ heels whose inhibition can be exploited in anticancer therapy. Primary effusion lymphomas (PELs) are very aggressive non-Hodgkin’s B cell lymphomas, whose pathogenesis is strictly linked to Kaposi’s sarcoma herpesvirus (KSHV) infection. Here we summarized previous studies from our and other laboratories exploring the cytotoxic effect of drugs inhibiting the main prosurvival pathways activated in PEL cells. Moreover, the immunogenicity of cell death, in terms of dendritic cell (DC) activation and their potential side effect on DCs, is discussed

    A new technique for thermal resistance measurement in power electron devices

    Get PDF
    A simple technique is proposed for the thermal resistance measurement of electron devices. The new approach is based on the standard measurements which are normally carried out for the electrical characterization of power devices, without requiring special-purpose instrumentation and/or physics-based temperature-dependent electrical device models. Experimental results, which confirm the validity of the new method, are provided

    The activation of KSHV lytic cycle blocks autophagy in PEL cells

    Get PDF
    This study confirms that autophagy is activated concomitantly with KSHV lytic cycle induction, and that autophagy inhibition by BECN1 knockdown reduces viral lytic gene expression. In addition, we extend previous observations and show that autophagy is blocked at late steps, during viral replication. This is indicated by the lack of colocalization of autophagosomes and lysosomes and by the LC3-II level that does not increase in the presence of bafilomycin A1 in primary effusion lymphoma (PEL) cells induced to enter the lytic cycle, either by TPA/sodium butyrate (BC3 and BCBL1) or by doxycycline (TRExBCBL1-Rta). The autophagic block correlates with the downregulation of RAB7, whose silencing with specific siRNA results in an autophagic block in the same cells. Finally, by electron microscopy analysis, we observed viral particles inside autophagic vesicles in the cytoplasm of PEL cells undergoing viral replication, suggesting that they may be involved in viral transpor

    Characterization of the Dynamic RON of 600 V GaN Switches under Operating Conditions

    Get PDF
    High-voltage GaN switches can offer tremendous advantages over silicon counterparts for the development of high-efficiency switching-mode power converters at high commutation frequency. Nonetheless, GaN devices are prone to charge-trapping effects that can be particularly relevant in the early-stage development of new technologies. Charge-trapping mechanisms are responsible for the degradation of the dynamic ON-resistance (RON) with respect to its static value: this degradation is typically dependent on the blocking voltage, the commutation frequency and temperature, and is responsible for the reduction of power converter efficiency. The characterization of this phenomenon is very valuable for the development of a new process to compare different technological solutions or for the final assessment of performance. This characterization cannot be made with traditional static or small signal measurements since RON degradation is triggered by application-like dynamic device excitations. In this paper, we propose a technique for the characterization of the dynamic RON of high-voltage GaN switches under real operating conditions: this technique is based on the design of a half bridge switching leg in which the DUT is operated under conditions that resemble its operation in a power converter. With this setup, the characterization of a 600 V GaN switch dynamic RON is performed as a function of variable blocking voltages and commutation frequency. Additionally, this technique allows the separation of thermal and trapping effects, enabling the characterization of the dynamic RON at different temperature

    Beam-Dependent Active Array Linearization by Global Feature-Based Machine Learning

    Get PDF
    An approach based on machine learning is proposed for the global linearization of microwave active beamforming arrays. The method allows for the low-complexity real-time update of the digital predistortion (DPD) coefficients by exploiting order-reduced model features, hence avoiding the need for repeated local DPD identification steps across the various operating conditions of the beamformer (e.g., different beam angles or RF power levels). The validation is performed by over-the-air (OTA) measurements of a 1Ă—4 array operating at 28 GHz across 100-MHz modulation bandwidth (BW)
    • …
    corecore